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The Mahler Volume

polar(K)

K

K : convex body

Polar body of K : set of points p such that
p · q ≤ 1 for q ∈ K

Mahler volume of K : product of the
volume of K and the volume of polar(K )

Important for us:

The Mahler volume of K is bounded below by a constant [Kup08]

A regular simplex attains the minimum volume [KR11]

Vast literature for centrally symmetric convex bodies
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Polytope Approximation

Problem description:

Input: convex body K in d-dimensional space and
parameter ε

Output: polytope P which ε-approximates K with
a small number of facets (alternatively, vertices)

Focus on Hausdorff metric in Euclidean spaces of
constant dimension d

Assume (without loss of generality) that
diam(K ) = 1

Assume the width of K is at least ε, for otherwise
the problem instance should be solved in a lower
dimensional space.

K

P

ε
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Uniform vs. Nonuniform Bounds

Several algorithms to find the “best” polytope for a given input

How good is this best polytope?

Nonuniform bounds:

Hold for ε ≤ ε0, where ε0 depends on the input

Example: Gruber [Gru93] bounds the complexity n using the
Gaussian curvature κ of the input

n = 1/ε(d−1)/2
∫

∂K

√
κ(x) dx

Uniform bounds:

Hold for ε ≤ ε0, where ε0 is a constant

Example: Dudley [Dud74] and Bronshteyn and Ivanov [BI76] bound
the maximum number of facets/vertices as a function of ε, d , and
the diameter of the input
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Dudley’s Approximation

K

Dudley, 1974:

A convex body K of diameter 1 can be
ε-approximated by a polytope P with
O(1/ε(d−1)/2) facets.

Dudley’s approximation is the best
possible for balls

It oversamples areas of very high
and very low curvatures

Intuition: A skinny body should be
easier to approximate
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Dudley’s Approximation
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Our Result: Improved Polytope Approximation

Better uniform bound for skinny bodies:

A convex body K can be ε-approximated by a polytope P with
Õ(
√

area(K )/ε(d−1)/2) facets (alternatively, vertices).

Uses area instead of diameter

Matches Dudley’s bound up to a log factor when the body is fat

Significant improvement for skinny bodies

Analysis uses several new techniques for the problem (polarity,
Mahler volume, ε-nets...)
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Impact to Other Problems

Approximate polytope membership

For the same storage, the query time is reduced to
the square root!

Õ(1/ε(d−1)/8) query time with
O(1/ε(d−1)/2) (Dudley’s) storage

Approximate nearest neighbor (ANN)

ANN reduces to polytope membership [AFM11]

Improved query time for storage between
O(n/εd/4) and O(n/εd−1)

1

ε ε

in

out

?
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Dual Caps and ε-Dual Caps

q

K

ε

Dual cap: portion of the boundary of
K visible from a point q

Width: distance between K and q

ε-dual cap: dual cap of width ε

A set N of points stabs all ε-dual caps
if for every dual cap D we have
D ∩ N 6= ∅

Lemma:

If a set N of points stabs all ε-dual caps,
then the polytope defined by tangent
hyperplanes constructed at the points of N

is an ε-approximation to K .
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Voronoi Patches

K

Vor(D) ∩ S

S
D

The Voronoi region Vor(D) of a dual cap D is the set of points
closer to D than to any other points of K

Dudley sphere: Sphere S of radius 3 centered at the origin

The Voronoi patch of a dual cap D is the intersection Vor(D) ∩ S
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Mahler Comes In

We show that:

An ε-dual cap D and its Voronoi patch
are related in a manner that is similar to
the polar transform (up to an ε-scaling).

Using the fact that the Mahler volume
is at least a constant:

Key lemma:

For any ε-dual cap D, the product of
area(D) and area(Vor(D) ∩ S) is
Ω(εd−1).

Less formally: If D has small area, then
its Voronoi patch is large

D

Vor(D) ∩ S
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Stabbing Large ε-Dual Caps

Large ε-dual cap:

area(D) ≥
√

area(K ) · ε(d−1)/2

Fraction of the boundary of K covered by D:

α =

√
area(K ) · ε(d−1)/2

area(K )
=

ε(d−1)/2

√
area(K )

We stab large ε-dual caps with an α-net on the boundary of the
convex body

Using VC-dimension arguments the size of the α-net is

O

(
1

α
log

1

α

)
= Õ

(√
area(K )

ε(d−1)/2

)
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Stabbing Small ε-Dual Caps

Small ε-dual cap: area(D) <
√

area(K ) · ε(d−1)/2

By the key lemma, the Voronoi patch of D is large:

area(Vor(D) ∩ S) >
ε(d−1)/2

√
area(K )

Dudley ball S has constant area

Fraction of the boundary of S covered by Vor(D) ∩ S :

α =
ε(d−1)/2

√
area(K )

We stab small ε-dual caps indirectly, using an α-net on the boundary
of the Dudley ball and mapping the points back to K

Using VC-dimension arguments the size of the α-net is

O

(
1

α
log

1

α

)
= Õ

(√
area(K )

ε(d−1)/2

)
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Approximate Polytope Membership Queries

The same methods improve the existing bounds [AFM11] for:

Polytope membership queries

Given a polytope P in d-dimensional space, preprocess
P to answer membership queries:

Given a point q, is q ∈ P?

Approximate version

An approximation parameter ε is given
(at preprocessing time)

Assume the polytope has diameter 1

If the query point’s distance from P ’s boundary:

> ε: answer must be correct

≤ ε: either answer is acceptable

1

ε ε

in

out

?
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Approximate Polytope Membership Queries

Improved tradeoff for approximate
polytope membership queries

New bounds:

For integer k ≥ 2, we can answer
ε-approximate polytope membership
queries with

Storage: O(1/ε(d−1)/(1−k/2k ))

Query time: O(1/ε(d−1)/2k+1

log(1/ε))

For the same storage, the query
time is reduced to roughly the
square root

Leads to improved approximate
nearest neighbor data structures

0

1/16

1/8

1/4

1/2

1/2 5/8 3/4 1

Simple upper bound
Previous upper bound [AFM11]

New upper bound

x: Storage is 1/εx(d−O(1))
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Lower bound [AFM11]

7/8

Storage: O(1/ε(d−1)/2)

Query time: Õ(1/ε(d−1)/8)
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Approximate Nearest Neighbor (ANN) Searching
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Previous upper bound [AMM09]
Previous upper bound [AFM11]

New upper bound
Lower bound [AMM09]

3/40

ANN: Preprocess n points such
that, given a query point q, can
find a point within at most 1 + ε
times the distance to q’s nearest
neighbor

It is possible to reduce ANN to
approximate polytope membership
[AFM11]

Improved query time for storage
between O(n/εd/4) and O(n/εd−1)
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Thank you!
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