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Universidade Federal do Estado
do Rio de Janeiro (UNIRIO)

Rio de Janeiro, Brazil
fonseca@uniriotec.br

David M. Mount‡

Department of Computer Science and
Institute for Advanced Computer Studies

University of Maryland
College Park, Maryland 20742

mount@cs.umd.edu

In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 29–42, 2012.

Abstract

The problem of approximating convex bodies by polytopes is an important and well
studied problem. Given a convex body K in Rd, the objective is to minimize the number
of vertices (alternatively, the number of facets) of an approximating polytope for a given
Hausdorff error ε. Results to date have been of two types. The first type assumes that K is
smooth, and bounds hold in the limit as ε tends to zero. The second type requires no such as-
sumptions. The latter type includes the well known results of Dudley (1974) and Bronshteyn
and Ivanov (1976), which show that in spaces of fixed dimension, O((diam(K)/ε)(d−1)/2)
vertices (alt., facets) suffice. Our results are of this latter type.

In our first result, under the assumption that the width of the body in any direction is
at least ε, we strengthen the above bound to Õ(

√
area(K)/ε(d−1)/2). This is never worse

than the previous bound (by more than logarithmic factors) and may be significantly better
for skinny bodies. Our analysis exploits an interesting analogy with a classical concept from
the theory of convexity, called the Mahler volume. This is a dimensionless quantity that
involves the product of the volumes of a convex body and its polar dual.

In our second result, we apply the same machinery to improve upon the best known
bounds for answering ε-approximate polytope membership queries. Given a convex polytope
P defined as the intersection of halfspaces, such a query determines whether a query point
q lies inside or outside P , but may return either answer if q’s distance from P ’s boundary is
at most ε. We show that, without increasing storage, it is possible to reduce the best known
search times for ε-approximate polytope membership significantly. This further implies
improvements to the best known search times for approximate nearest neighbor searching
in spaces of fixed dimension.
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†Research supported by CNPq and FAPERJ grants.
‡Research supported by NSF grant CCR-0635099 and ONR grant N00014-08-1-1015.
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1 Introduction

Approximating convex bodies by polytopes is a fundamental problem, which has been exten-
sively studied in the literature. (See [6] for a recent survey.) The problem is to determine the
minimum number of vertices n (alternatively, the minimum number of facets) of an approxi-
mating polytope for a given error ε > 0. Error is commonly measured through the Hausdorff
distance [6]. Given a convex body K in d-dimensional space, we say that a polytope P ε-
approximates K if the Hausdorff distance between K and P is at most ε. Throughout this
paper, we will restrict attention to the Hausdorff metric and to Euclidean space of constant
dimension d.

Although much work has been done on the optimization problem of finding the “best”
approximating polytope for a specific input according to various criteria (see, for example, [9, 13,
17, 22]), our interest is in establishing bounds on the combinatorial complexity of approximating
general convex bodies. Approximation bounds are typically expressed as the number n of
vertices or facets of a convex polytope needed to achieve a certain approximation error ε for a
given convex body K. Results are of two common types. In both cases, it is shown that there
exists ε0 > 0, and the bounds hold for all ε ≤ ε0. In the first type, which we call nonuniform
bounds, the value of ε0 depends on K (for example, on K’s maximum curvature). Such bounds
are often stated as holding “in the limit” as ε approaches zero, or equivalently as n approaches
infinity. In the second type, which we call uniform bounds, the value of ε0 is independent of K.

As an example of a nonuniform bound, consider the following result due to Gruber [14]. Let
∂K denote K’s boundary. For a point x ∈ ∂K, let κ(x) denote the Gaussian curvature at x,
and let dσ(x) denote the ordinary differential surface element at x. Under certain smoothness
conditions on K, Gruber showed that there exists an approximating polytope with n vertices,
where

n = O

(
1

ε(d−1)/2

∫
∂K

√
κ(x)dσ(x)

)
,

as ε → 0. The constant hidden in the O-notation depends only on dimension. This bound
also applies to the number of facets n in an approximating polytope. Recently, Clarkson [10]
has extended these results and shown a similar bound on the triangulation complexity for more
general manifolds that may not represent the boundary of a convex body. Other examples of
nonuniform bounds can be found in [15, 21, 26, 27].

In contrast, examples of uniform bounds include Dudley [12] and Bronshteyn and Ivanov [5].
These bounds hold without any smoothness assumptions, and they hold even for polytopes.
Dudley showed that, for ε ≤ 1, any convex body K can be ε-approximated by a polytope
P with O((diam(K)/ε)(d−1)/2) facets. Bronshteyn and Ivanov showed the same bound holds
for the number of vertices. These bounds are tight up to constant factors (e.g., when K is a
ball). Again, constants hidden in the O-notation depend only on d. These results have many
applications, for example, in the construction of coresets [1]. In this paper, we consider only
uniform bounds.

1.1 Our Results

We present two main results, which arise by replacing the approximation bounds of both Dudley
and Bronshteyn and Ivanov with bounds that are more sensitive to the local geometry of the
convex body. Our first result shows that the existing bounds can be significantly improved for
the case when K has directional width smaller than the diameter along some directions, that
is, when K is skinny. It seems intuitive that skinny bodies should be easier to approximate,
but we are unaware of any uniform bounds in the literature that capture this fact. Under

2



the reasonable assumption1 that the width of the body in any direction is at least ε, we show
that it is possible to construct an ε-approximating polytope P in which the number of facets2

is Õ(
√

area(K)/ε(d−1)/2), where area(K) denotes the surface area of K. Although we do not
include it here, a similar bound can be proved for the number of vertices. Since area(K) is
bounded by O(diam(K)d−1), our bound is as good as Dudley’s for fat convex bodies (up to
logarithmic factors), and it is superior for skinny ones. These results are presented in Section 4,
with the main result given in Theorem 4.1.

Our second result involves approximate polytope membership queries. Given a convex poly-
tope P , defined as the intersection of halfspaces, an ε-approximate polytope membership query
determines whether a query point q lies inside or outside P , but it may return either answer
if q’s distance from P ’s boundary is at most ε. Polytope membership queries find applications
in many geometric areas, such as linear programming queries, ray shooting, nearest neighbor
searching, and the computation of convex hulls [7, 8, 18, 20, 23]. In dimension d ≤ 3, it is
possible to build a data structure of linear size that can answer such queries in logarithmic
time [11]. In higher dimensions, however, all exact data structures with roughly linear space
take Õ(n1−1/bd/2c) query time [19], which, except in small dimensions, is little better than
brute-force search.

Assuming that P has unit diameter, a straightforward application of Dudley’s method al-
lows such queries to be answered in O(1/ε(d−1)/2) storage and query time (by a brute-force
enumeration of the approximating halfspaces). We recently showed that there is a very simple
hierarchical search algorithm that achieves the same storage bound but improves the query
time to O(1/ε(d−1)/4), thus reducing the exponent by half [2]. In this paper, we show that,
with the same storage bounds, it is possible to again reduce the exponent in the query time by
half, to O(1/ε(d−1)/8). We also present a space-time tradeoff that improves query times to the
square root of the previous bounds throughout the spectrum. The results are summarized in
Figure 1(a).

It is notable that the improvement involves no change to the simple data structure of [2],
just a better analysis of its complexity. These results are presented in Section 5, and the main
results is given in Theorem 5.1. As shown in [2], these results provide immediate improvements
to the best space-time tradeoffs for approximate nearest neighbor searching (see Figure 1(b)).

1.2 Overview of Methods

Our results stem from a locally sensitive approach to convex approximation. Our area-based
bound on the complexity of convex body approximation comes about through a consideration
of the complexity of approximating small patches on the boundary of the convex body, called
caps. Given a halfspace H whose bounding hyperplane intersects K, we define a cap to be
the portion of ∂K that is contained within H. The width of the cap is the maximum distance
between any point on the cap and the bounding hyperplane of H, and an ε-cap is a cap of
width ε. A set of points is said to stab all ε-caps if every ε-cap has a nonempty intersection
with the set. Bronshteyn and Ivanov [5] observed that the convex hull of any set of points that

1Without this assumption it is impossible to achieve area-based bounds. For example, given a fat d-dimensional
convex body, embed it in dimension d + 2 and take its Minkowski sum with a ball of radius δ � ε. The surface
area of the resulting body can be made arbitrarily small as a function of δ, but clearly the complexity of any
approximating body is not smaller than for the original body. Conversely, if the body is of width less than ε
in some direction, then by projecting the body onto a hyperplane orthogonal to this direction, we can reduce
the problem to a convex approximation problem in one lower dimension. This can be repeated until the body’s
width is sufficiently large, after which our bounds apply.

2Throughout, we treat ε as an asymptotic quantity and use eO to indicate that logarithmic factors in ε are
ignored.

3



0

1/16

1/8

1/4

1/2

1/2 5/8 3/4 1

(a) Tradeoffs for Polytope Membership

Simple upper bound
Previous upper bound [2]

New upper bound

x: Storage is 1/εx(d−O(1))

y
:

Q
u
er

y
ti

m
e

is
1/

εy
(d
−

O
(1

))

Lower bound [2]

7/8
0

1/16

1/8

1/4

1/2

1/4 1/2 1

(b) Tradeoffs for ANN search

x: Storage is n/εx(d−O(1))

y
:

Q
u
er

y
ti

m
e

is
O

(l
og

n
)
+

1/
εy

(d
−

O
(1

))

Previous upper bound [3]
Previous upper bound [2]

New upper bound
Lower bound [3]

3/40

Figure 1: The multiplicative factor in the exponent of the 1/ε term for (a) polytope membership
queries and (b) approximate nearest neighbor (ANN) queries. The O(1) term in the exponent
corresponds to a constant that does not depend on d.

stabs all ε-caps yields an ε-approximation of K. Assume that K has unit diameter, and let S
be the (d − 1)-dimensional sphere of radius 3 centered at the origin, which we call the Dudley
hypersphere. (Any sufficiently large constant radius suffices.) We may associate any ε-cap C
with the surface patch on S consisting of points whose closest point on ∂K lies on C; we call
this the Voronoi patch of C.

Our key geometric observation is that the product of the area of any ε-cap and its associated
Voronoi patch must be large. Intuitively, if the surface area of the ε-cap is small, then its
curvature must be high, and so its associated Voronoi patch must have relatively large area.
We exploit this observation to efficiently stab all the ε-caps using a two-pronged strategy. We
stab ε-caps that have large surface area by selecting points randomly on the boundary of K
using density proportional to the surface area. We stab the ε-caps that have small surface area
by selecting points randomly on the Dudley hypersphere (again using density proportional to
the surface area), and then choosing their nearest neighbor on ∂K. We will see in Section 4
that this allows us to stab all the ε-caps with Õ(

√
area(K)/ε(d−1)/2) points.

Our approach to answering polytope membership queries for a convex body K is based on a
quadtree search, where the basic problem involves approximating the intersection of the bound-
ary of K with a single quadtree box. Our improved bounds for polytope membership queries
follow as a consequence of establishing improved bounds for such approximations, whenever the
diameter of the quadtree box is at least

√
ε. Roughly speaking, we show that if A1 denotes

the area of ∂K ∩ b, and A2 denotes the area of the associated Voronoi patch, then ∂K ∩ b
can be ε-approximated using O(

√
A1A2/ε(d−1)/2) facets. From this it is not hard to show that

for a box b of diameter
√

ε, if Dudley’s method uses m facets to ε-approximate ∂K ∩ b, then
O(

√
m) facets suffice. We then exploit this fact in presenting an improved analysis of the search

algorithm of [2].
The geometric underpinnings needed to show that the product of areas is bounded is pre-

sented in Section 3. We introduce a dual notion of cap, called a dual cap, and we explore the
relationship between the areas of surface caps and their Voronoi patches. We demonstrate an
interesting parallel between these concepts and a classical notion from the theory of convexity,
called the Mahler volume [4, 25]. The Mahler volume of a convex body is a dimensionless
quantity that involves the product of the body’s volume and the volume of its polar body. We
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demonstrate that caps and their Voronoi patches exhibit a similar polar relationship.
The improvements presented here do not arise simply by a more careful application of the

analysis given in [2]. The analysis given there relied on a direct application of Dudley’s and
Bronshteyn and Ivanov’s bounds. The key to the improvements of this paper is the develop-
ment of uniform bounds that are sensitive to local geometry. Sensitivity to local geometry has
been applied in asymptotic contexts (under the assumption of smoothness) by Gruber [14] and
Clarkson [10]. It has also been applied for uniform bounds, but only in the two-dimensional
setting by Rote [24]. The techniques developed here provide powerful tools for analyzing the
complexity of approximating arbitrary convex bodies on a local level, and we believe that these
techniques will be of wider applicability.

2 Preliminaries

Let K denote a convex body in Rd, that is, a nonempty, closed, bounded convex set. Let ∂K
denote K’s boundary. Given δ > 0, we say that a convex body is δ-smooth if at each point
q ∈ ∂K there exists a ball of radius δ that lies entirely within K and contains q on its boundary.
We say that K is smooth if it is δ-smooth for some δ > 0. If K is smooth, then for any q ∈ ∂K,
there is a unique supporting hyperplane for K containing q, which we denote by h(q).

Given any bounded set X in Rd, which for us will be a convex body, we use vol(X) to
denote its d-dimensional Hausdorff measure. Given a (d − 1)-dimensional manifold Y in Rd,
for example, a surface patch on a convex body, we let area(Y ) denote its (d − 1)-dimensional
Hausdorff measure. Given a convex body X in Rd, we use area(X) as a shorthand for area(∂X).
We say that a polytope P ε-approximates K if the Hausdorff distance between K and P is at
most ε.

Let H be a halfspace whose bounding hyperplane intersects K. The intersection K ∩ H
is called the cap generated by H. Since we are interested in the surface of K, henceforth we
will use the term cap in a nonstandard sense as the portion of the boundary of the cap that
coincides with ∂K (in essence, the outer skin of the cap). Let q denote a point of the cap of
maximum distance from ∂H. By local maximality, h(q) and ∂H are parallel to each other, and
the distance between them is called the width of the cap. A cap of width ε is called an ε-cap.
We refer to q as the cap’s apex, and K ∩ ∂H as the cap’s base, which we denote by Γq. By
smoothness, for each q ∈ ∂K, there is a unique ε-cap having q as its apex, which we denote by
Cq (see Fig 2(a)).

q

K

Γq

Dq

(b)

q
h(q)

K

(a)

h(q′)

H
ε

Cq

Γq

q′
ε

Figure 2: Caps and dual caps.

Given any point q external to K, the dual cap3 generated by q is the topological closure of
the intersection of all halfspaces that contain K but not q. As before, since we are interested in

3The term “dual cap” arises from the observation that, given an inclusion-reversing dual transformation, if
we let K∗ and q∗ be the respective duals of K and q, the dual cap of K generated by q is the dual of the cap of
K∗ generated by q∗.
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the surface of K, henceforth we use the term dual cap, denoted by Dq, to refer to the portion
of the boundary of the dual cap that coincides with ∂K (which can be visualized as the subset
of points of ∂K illuminated by a light source at q). Let q′ be the closest point of K to q (see
Fig 2(b)).

The distance from q to q′ is called the width of the dual cap. A dual cap of width ε is called
an ε-dual cap. The point q is the dual cap’s apex, and h(q′) ∩ conv({q} ∪ K) is the dual cap’s
base, which we denote by Γq.

q

Dq

(b)(a)

Vor(Dq) ∩H(q)

S
K

X

Vor(X) ∩ S

S

h(q′)
q′

H(q)

K

Figure 3: Voronoi cells: (a) associated with a surface patch X and (b) a dual cap Dq and the
associated Voronoi cell on H(q).

Given a surface patch X ⊆ ∂K, let Vor(X) denote the set of points exterior to K whose
closest point on ∂K lies within X. Let S denote the (d − 1)-dimensional sphere of radius 3
centered at the origin, which we call the Dudley hypersphere. (The name is inspired by the
sphere used in polytope approximation construction [12]. The value 3 can be replaced by any
constant that is at least a constant factor larger than 1 + ε.) Throughout, we assume that K
has been scaled and translated to lie within the ball of unit radius centered at the origin. It
follows that the distance from any point of S to its closest point of K is at least 2. Given a cap
or dual cap X, Vor(X)∩ S is the surface patch consisting of points of S whose closest point on
∂K lies within X (see Figure 3(a)).

Because we are interested in the local geometry of K’s boundary, it will be useful to limit
the diameter of caps and dual caps. Given δ > 0, define Bδ(q) to be a closed Euclidean ball of
radius δ centered at q. Define the δ-restriction of Cq, denoted C δ

q , to be Cq ∩ Bδ(q). Similarly,
define the δ-restriction of Dq, denoted D δ

q , to be Dq ∩ Bδ(q).

3 Caps, Dual Caps, and Areas

In this section we present the principal geometric underpinnings of our approximation results.
In particular, we consider the relationship between the surface areas of both restricted and
unrestricted ε-dual caps and the surface areas of their associated Voronoi patches on S. As
mentioned in the introduction, an ε-dual cap of small area must have high curvature, and hence
its Voronoi patch on the Dudley hypersphere should be large. We will establish this relationship
for dual caps by providing a lower bound on the product of the areas of the ε-dual cap Dq and
its associated Voronoi patch, Vor(Dq) ∩ S. Analogous results can be shown for caps, but dual
caps suffice for our purposes. Our analysis will reveal an interesting similarity between these
products and the Mahler volume of a convex body [4, 16, 25]. In Section 3.1 we start with the
simpler unrestricted case, and in Section 3.2 we extend this to the restricted case.
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3.1 Area Product Bounds: Unrestricted Case

In this section we limit attention to unrestricted dual caps. Rather than dealing with spherical
patches, it will be easier to start with hyperplane patches and then generalize to the spherical
case. Given a point q external to K, let q′ be the closest point on ∂K to q, and recall that h(q′)
is the unique supporting hyperplane at q′. Let H(q) be a hyperplane that is parallel to h(q′),
tangent to the Dudley hypersphere S, and on the same side of K as h(q′) (see Figure 3(b)). We
call this the Dudley hyperplane for q. We prove two bounds regarding the product of the area
of dual caps and their Voronoi patches, one for the Dudley hyperplane and one for the Dudley
hypersphere.

Lemma 3.1 Let 0 < ε ≤ 1. Let K be a smooth, convex body that lies within a unit ball in Rd,
and let q be a point at distance ε from K. Let Dq denote the ε-dual cap generated by q. Then
there is a constant c, depending only on dimension, such that:

(i) area(Dq) · area(Vor(Dq) ∩ H(q)) ≥ c · εd−1, where H(q) is the Dudley hyperplane for q,

(ii) if K is ε-smooth, then area(Dq) · area(Vor(Dq) ∩ S) ≥ c · εd−1, where S is the Dudley
hypersphere for K.

Before considering Vor(Dq) ∩ H(q), it will be helpful to define a body that is related to the
polar dual of the base Γq. The parallel hyperplanes h(q′) and H(q) can each be identified with
Rd−1, by taking the origin to be located at the orthogonal projection of q onto each hyperplane.
(In the case of h(q′) this is q′.) The coordinate axes for both are taken to be any consistent set
of d − 1 orthonormal vectors lying parallel to these hyperplanes. Since Γq is the intersection of
a (d − 1)-dimensional hyperplane with a bounded convex set that contains q′ (the convex hull
of K ∪ {q}), we may view it as a convex body in Rd−1 that contains the origin. Let ‖v‖ denote
the Euclidean length of v ∈ Rd−1. For each v ∈ Γq, we define hv to be a halfspace in Rd−1

containing the origin whose bounding hyperplane is orthogonal to v and at distance ε/‖v‖ from
the origin (on the same side of the origin as v).

Define Γ̂q =
∩

v∈Γq
hv, which we treat as a subset of H(q). This body is bounded, convex,

and contains the origin. Rather than analyzing Vor(Dq) ∩ H(q) directly, we will focus on Γ̂q.
First, we show that Γ̂q is a subset of Vor(Dq) ∩ H(q).

q

h′(q′)
ε

p′

(b)

ℓ ≥ 1

t′x w

ℓε/t′x

hv

K ′

ε/t′x

q

h′(q′)
q′

ε

H ′(q)
p′

t
t′

(a)

ℓ ≥ 1

w

K ′

Dq

Vor(Dq) ∩H ′(q)

H ′(q)

Tq

Vor(Tq) ∩H ′(q)

tq′
t′

Figure 4: Proof of Lemma 3.2.

Lemma 3.2 Given the preconditions of Lemma 3.1, Γ̂q ⊆ Vor(Dq) ∩ H(q).
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Proof : Consider any point w ∈ ∂K \Dq. It suffices to show that w cannot be the closest point
of ∂K to any point p ∈ Γ̂q. It will simplify matters to consider the problem in a 2-dimensional
setting. Consider the unique plane Φ containing the points q, q′, and w. For the sake of
visualization, we identify this plane with R2 so that q′ is the origin and the axes are positioned
so that q lies on the y-axis at distance ε above q′ (see Figure 4(a)). Let K ′, h′(q′) and H ′(q)
denote the respective intersections of K, h(q′), and H(q) with this plane, and let p′ denote the
orthogonal projection of p onto Φ. Without loss of generality, we may assume that w lies in the
positive-x halfplane. Let t be the point of tangency of ∂K ′ with respect to q in this halfplane.
Let t′ denote the point at which the line qt intersects h′(q′).

Clearly, any point of ∂K ′ can be closest to some point of Γ̂q only if it lies on the upper hull
of K (that is, the portion of ∂K ′ visible from a point at y = +∞). Throughout, we restrict
attention to the portion of the upper hull of K ′ that lies in the positive-x halfplane.

Given a point u ∈ Φ, let ux and uy denote its coordinates relative to the above coordinate
system. Let v denote the horizontal vector from q′ to t′, whose length is clearly t′x. By viewing
v as a vector in Rd−1 on the plane h(q′), it contributes a halfspace hv to the body Γ̂q, which
is bounded by a hyperplane that is orthogonal to v (and hence orthogonal to Φ) and lies at
distance ε/t′x from the orthogonal projection of q onto H ′(q) (see Figure 4(b)).

To complete the proof, we will show that w is not the closest point on ∂K ′ to p′. To see
why this suffices, observe that the squared Euclidean distance from p to any point on Φ can be
decomposed into two components, one parallel to Φ and one orthogonal to Φ. The orthogonal
component is the same for all points on Φ, and so may be ignored when comparing distances.
The parallel component is determined by the distances to p′. Thus, if w is not the closest point
on ∂K ′ to p′, then w is not the closest point of ∂K to p.

Since K ′ is convex and smooth, there is a support-based condition for any point u ∈ ∂K ′

to be the closest point on ∂K ′ to a point p′ /∈ K ′. In particular, the line segment up′ must be
perpendicular to the (unique) supporting hyperplane to K ′ at u. To apply this, consider the
convex body conv({q}∪K ′), and let Tq denote the surface patch on this boundary consisting of
the union of closed line segments joining q to its points of tangency on K ′. (We just show the
right-side tangent in Figure 4(b).) Based on the support-based criterion given above, is easy to
see that, with respect to the body conv({q}∪K), Vor(Tq)∩H(q) is the same as Vor(Dq)∩H(q).
(Vor(Tq) ∩ H(q) is shown as a solid line segment on H(q) in Figure 4(b). Although Tq is not
smooth, it can be made so by taking its Minkowski sum with a ball of infinitesimally small
radius.)

To show that w is not the closest point on ∂K ′ to p′, we will show that ‖qp′‖ < ‖wp′‖. To
this end, consider a ray in Φ emanating from q in the direction of an outward normal to the
segment qt. The absolute value of the slope of the line qt is ε/t′x, and therefore, the slope of this
ray is t′x/ε. Let ` denote the distance from q to H(q). Since each point of K is at distance at
least 2 from H(q), we have ` ≥ 2 − ε ≥ 1, it follows that this ray intersects H ′(q) at a distance
of `ε/t′x from the y-axis, which is to the right of the point at which hv’s bounding hyperplane
intersects H ′(q). Since p ∈ hv, p′ lies to the left of this ray. It is easy to see, however, that,
restricted to the positive-x halfplane, any point lying to the left of the ray is closer to q than
to any point lying below the line qt. Since w /∈ Dq, it lies below qt, and therefore, we achieve
the desired conclusion that w is not the closest point on ∂K ′ to p′. ut

In order to bound the product of the areas of Γq and Γ̂q, we will demonstrate the relationship
between Γ̂q and the polar dual of Γq, and then apply a well known result from the theory of
convexity, called the Mahler volume. First, we recall some facts about the polar transform.
Given a vector v ∈ Rd other than the origin, define polar(v) to be the halfspace that contains
the origin whose bounding hyperplane is orthogonal to v and at distance 1/‖v‖ from the origin
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(on the same side of the origin as v). Generally, given r > 0, define polarr(v) to be the halfspace
at distance r2/‖v‖ (see Figure 5(a)). Given a convex body K that contains the origin in its
interior, define polarr(K) to be the intersection of the halfspaces polarr(v), for all v ∈ K (see
Figure 5(b)). Clearly, polarr(K) is a scaled copy of polar(K) by a factor of r2.

(b)(a)

r
v

r2/‖v‖

polarr(v)

polarr(K)

K

Figure 5: The generalized polar transform and polar body.

The bodies polar√ε(K) and Γ̂q are bounded by the same set of halfspaces, and so we have:

Lemma 3.3 Given a smooth convex body K and an exterior point q, Γ̂q = polar√ε(Γq).

Given the above results, we can now prove the first part of Lemma 3.1. Recall that 0 < ε ≤ 1.
Since Γq is a subset of the orthogonal projection of Dq onto the plane h(q′), area(Γq) ≤ area(Dq).
By Lemmas 3.2 and 3.3, we have

area(Vor(Dq) ∩ H(q)) ≥ area(Γ̂q) = area(polar√ε(Γq)).

As observed earlier, polarr(Γq) is a scaled copy of polar(Γq) by a factor of r2. Since this
is a (d − 1)-dimensional set, we have area(polar√ε(Γq)) = εd−1 · area(polar(Γq)). By known
inequalities on the Mahler volume [16], there is a constant c depending only on d such that
area(Γq) · area(polar(Γq)) ≥ c. Combining these observations, we have

area(Dq) · area(Vor(Dq) ∩ H(q))

≥ area(Γq) · (εd−1 · area(polar(Γq)))

≥ c · εd−1,

which establishes Lemma 3.1(i).
In order to establish the second part of Lemma 3.1, we need to assume that K is sufficiently

smooth. If not, Γq might have very small area (much smaller than εd−1), but the entire surface
area of the Dudley hypersphere is bounded above by a constant. If K is ε-smooth, then it is
easy to show that Γq contains a (d−1)-dimensional ball (centered at q′) of radius at least ε/

√
3.

Consider the area of Γ̂q. Each of its bounding halfspaces hv is defined by a hyperplane whose
distance from the origin is ε/‖v‖. By smoothness, along any direction, there exists a vector
v ∈ Γq of length at least ε/

√
3, so the associated bounding hyperplane hv for Γ̂q is at distance

at most ε/(ε/
√

3) =
√

3 from the origin on H(q). The projection of any differential element
on H(q) lying within a constant distance of the origin undergoes a constant factor decrease4

4Consider a differential element dv on H(q). The corresponding vector with respect to the center of the
Dudley hypersphere is of length x =

p

9 + ‖v‖2, and it is at angle θ = arctan(‖v‖/3) with respect to vertical.
Projecting this element onto the Dudley hypersphere results in a scaling by (3/x) cos θ. Since ‖v‖ ≤

√
3, we have

x ≤ 2
√

3 and cos θ ≥
√

3/2. Therefore, the projection of this differential element onto the Dudley sphere is at
least (3/4)dv, which implies that the projection results in a constant-factor decrease in the surface area.
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when projected onto to the Dudley hypersphere. Thus, for some constant factor c′, we have
area(Vor(Dq) ∩ S) ≥ c′ · area(Vor(Dq) ∩ H(q)). Combining this with Lemma 3.1(i) establishes
Lemma 3.1(ii).

3.2 Area Product Bounds: Restricted Case

In this section we generalize the results of the previous section to the case of restricted dual
caps. (As before, analogous results hold for restricted caps, but these results are not needed
here.) Recall that, given a parameter δ > 0, the δ-restricted cap C δ

q and the δ-restricted dual
cap D δ

q come about by intersecting the standard cap and dual cap, respectively, with a ball
of radius δ centered at q. Restriction complicates the simple relationship between Γ̂q and the
polar body. Although the analysis of the section is structurally similar to that of the previous
section, there are added technical complications.

q′

Γδq

δ′

(a)

q′

δ/3

(b)

v
q′

δ/3

(c)

v

δ/6

ε

2‖v‖

Figure 6: The definitions of Γδ
q and Γ̂δ

q . (The figure is not drawn to scale.)

As before, we start by considering the intersection of the Voronoi region with the Dudley
hyperplane H(q) and then generalize to the Dudley hypersphere S.

Lemma 3.4 Let 0 < ε ≤ 1 and 3ε ≤ δ ≤ 3
√

ε. Let K be a smooth, convex body that lies within
a unit ball in Rd, and let q be a point at distance ε from K. Let D δ

q denote the δ-restriction of
the ε-dual cap generated by q. Then there is a constant c, depending only on dimension, such
that:

(i) area(D δ
q ) · area(Vor(D δ

q )∩H(q)) ≥ c · δ2(d−1), where H(q) is the Dudley hyperplane for q,

(ii) if K is ε-smooth, then area(D δ
q ) · area(Vor(D δ

q ) ∩ S) ≥ c · δ2(d−1), where S is the Dudley
hypersphere for K.

Define Γδ
q to be the δ-restricted base of the dual cap, by which we mean the intersection

of the base with a ball of radius δ centered at q. Because q lies at distance ε above h′(q), Γδ
q

is the intersection of Γq and a (d − 1)-dimensional ball of radius δ′ =
√

δ2 − ε2, centered at q′

(see Figure 6(a)). As before, we define an intermediate convex body upon which to base our
analysis. Recall that h(q′) and H(q) can each be identified with Rd−1 by taking the origin to
be located at the orthogonal projection of q onto each hyperplane. We may therefore view Γδ

q

as a convex body in Rd−1 that contains the origin. For each v ∈ Γδ
q , we define a halfspace hv

in Rd−1 as follows. If ‖v‖ ≥ δ/3, then hv is the halfspace containing the origin whose bounding
hyperplane is orthogonal to v and at distance δ/6 from the origin (see Figure 6(b)). If ‖v‖ < δ/3,
then hv is the (d − 1)-dimensional halfspace containing the origin whose bounding hyperplane
is orthogonal to v and at distance ε/(2‖v‖) from the origin (see Figure 6(c)).
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Define Γ̂δ
q =

∩
v∈Γδ

q
hv, which we treat as a subset of H(q). Note that, when ‖v‖ < δ/3,

the hyperplane bounding hv in this definition is closer to the origin than that given in the
definition of Γ̂q from the previous section. This body is bounded, convex, and contains the
origin. Analogous to Lemma 3.2 we have the following.

Lemma 3.5 Given the preconditions of Lemma 3.4, Γ̂δ
q ⊆ Vor(D δ

q ) ∩ H(q).

Proof : Consider any point w ∈ ∂K \ D δ
q . If w /∈ Dq, then the proof follows from the same

argument given in Lemma 3.2 (with a suitable adjustment of constants). Thus, it suffices to
consider only the case where w ∈ Dq \ Bδ(q).

As in the earlier proof, define the plane Φ containing the points q, q′, and w, and define K ′,
h′(q′), H ′(q), t, and t′ as done there. As before, it suffices to show that w is not the closest
point on K ′ to the orthogonal projection of p onto Φ, which we denote by p′. Let v denote
the horizontal vector from q′ to t′. By viewing v as a vector in Rd−1 on the plane h(q′), it
contributes a halfspace hv to the body Γ̂q, which is bounded by a hyperplane that is orthogonal
to v (and hence orthogonal to Φ).

We consider two cases, depending on t′x, the length of v. In the first case, assume that
t′x ≥ δ/3 (see Figure 7(a)). We assert that wx > δ/3. As mentioned earlier, we may assume
that w /∈ Bδ(q). Let σw and σt denote the absolute values of the slopes of the lines q′w and
qt, respectively. Since w ∈ Dq and K ′ is convex, the line q′w must intersect the line qt, which
implies that σw ≤ σt. Since σt = ε/t′x, and t′x ≥ δ/3 ≥ ε, we have σw ≤ 1. Since w /∈ Bδ(q), we
have wx ≥ δ/

√
2 > δ/3, as desired.

q

h′(q′)
q′

ε

H ′(q)
p′

t

t′

(a)

w

K ′

Dq

hv

δ/6

q

h′(q′)
q′

ε

H ′(q)
p′

t

t′

(b)

ℓ ≥ 1

w

K ′

(ℓ + ε)ε/2t′x

t′′

q′′

ε/2t′x

hv

Figure 7: Proof of Lemma 3.5.

Having established that wx > δ/3, consider the vector v. Since it is of length t′x ≥ δ/3, Γ̂q
δ

is a subset of the halfspace hv (in H(q)) whose bounding hyperplane is orthogonal to v and
at distance δ/6 from the origin (the orthogonal projection of q onto H(q)). Since p′ ∈ Γ̂q

δ , it
follows that it lies within distance δ/6 of the y-axis. In contrast, w lies at more than twice this
distance from the y-axis. It follows directly that p′ is closer to q′ than to w, and thus, w cannot
be the closest point to p′ on ∂K ′.

In the second case, assume that t′x < δ/3. Let t′′ be the intersection of the line qt with
∂Bδ(q), and let q′′ be the point on the y-axis horizontal from t′′ (see Figure 7(b)). Let σ′′ be
the absolute slope of the line q′t′′. By convexity, and the fact that w /∈ Bδ(q), it follows that
w lies below the line q′t′′. We assert that σ′′ ≥ σt/2. It is easy to see that this is equivalent to
the inequality q′y − q′′y ≥ (qy − q′′y )/2, or equivalently qy − q′y ≤ (qy − q′′y )/2. By similar triangles,
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this latter inequality is equivalent to ‖t′ − q‖ ≤ ‖t′′ − q‖/2. Clearly, ‖t′′ − q‖ = δ. Since 3ε ≤ δ
and t′x < δ/3, we have

‖t′ − q‖ =
√

t′x
2 + ε2 ≤

√(
δ

3

)2

+
(

δ

3

)2

<
δ

2
=

‖t′′ − q‖
2

.

This establishes that σ′′ ≥ σt/2, as desired.
Observe that σt = ε/t′x. Given that σ′′ ≥ σt/2 = ε/(2t′x), consider a ray emanating from q′

that is orthogonal to q′t′′. Letting ` denote the distance from q to H(q), by similar triangles
we see that this ray intersects H ′(q) at a distance from the y-axis of (` + ε)σ′′ ≥ (` + ε)ε/(2t′x).
As observed in the proof of Lemma 3.2, ` ≥ 1, and so this ray intersects H ′(q) to the right of
the point where the hyperplane defining hv intersects H ′(q), whose distance from the y-axis is
ε/(2‖v‖) = ε/(2t′x). Since p ∈ Γ̂δ

q , it lies to the left of this point. It is easy to see, however,
that, restricted to the positive-x halfplane, any point lying to the left of the ray is closer to q′

than to any point that lies below the line q′t′′. Since w is such a point, we achieve the desired
conclusion that w is not the closest point on ∂K ′ to p′. ut

In order to bound the product of the areas of Γδ
q and Γ̂δ

q , we proceed as in the preceding
section by demonstrating the relationship between Γ̂δ

q and the polar dual of Γδ
q .

Lemma 3.6 Given the preconditions of Lemma 3.4, polarr(Γδ
q ) ⊆ Γ̂δ

q , where r ≤ min(
√

ε/2, δ/5).

Proof : Recall that polarr(Γδ
q ) =

∩
v∈Γδ

q
polarr(v) and Γ̂δ

q =
∩

v∈Γδ
q

hv, where hv was defined

earlier. For each v ∈ Γδ
q , polarr(v) and hv are halfspaces with parallel supporting hyperplanes

(both on the same side of the origin), which may differ only with respect to their distances from
the origin.

We consider the two cases arising in the definition of hv. If ‖v‖ ≥ δ/3, then hv is at distance
δ/6 from the origin and polarr(v) is at distance r2/‖v‖ ≤ (δ/5)2/(δ/3) ≤ δ/6, which is at least
as close. On the other hand, if ‖v‖ < δ/3, then hv is at distance ε/(2‖v‖) and polarr(v) is
at distance r2/‖v‖ ≤ ε/(2‖v‖), which is also at least as close. Since each bounding halfspace
of polarr(Γδ

q ) is as close to the origin as its parallel bounding halfspace of Γ̂δ
q , it follows that

polarr(Γδ
q ) ⊆ Γ̂δ

q . ut

Given the above results, we can now prove the first part of Lemma 3.4 in a manner analogous
to the proof of Lemma 3.1.
Proof : (of Lemma 3.4)

Recall that Let 0 < ε ≤ 1 and δ ≤ 3
√

ε. Since Γδ
q is a subset of the orthogonal projection of

D δ
q onto the plane h(q′), area(Γδ

q ) ≤ area(D δ
q ). Let r = δ/5. Since δ ≤ 3

√
ε, r ≤ 3

√
ε/5 ≤

√
ε/2.

Thus, r satisfies the conditions of Lemma 3.6. By applying both Lemmas 3.5 and 3.6, we have

area(Vor(D δ
q ) ∩ H(q)) ≥ area(Γ̂δ

q ) ≥ area(polarr(Γ
δ
q )).

As observed earlier, polarr(Γδ
q ) is a scaled copy of polar(Γδ

q ) by a factor of r2 = (δ/5)2. Since
this is a (d − 1)-dimensional set, we have area(polarr(Γδ

q )) = (δ/5)2(d−1) · area(polar(Γδ
q )). As

before, applying the inequality from [16] on the Mahler volume, there is a constant c′ depending
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only on d such that area(Γδ
q ) · area(polar(Γδ

q )) ≥ c′. Combining these observations, we have

area(D δ
q ) · area(Vor(D δ

q ) ∩ H(q))

≥ area(Γδ
q )

((
δ

5

)2(d−1)

area(polar(Γδ
q ))

)

≥ c′

52(d−1)
· δ2(d−1).

Setting c = c′/(52(d−1)) completes the proof of Lemma 3.4(i). The second part is established by
the same argument used in the proof of Lemma 3.1(ii). ut

4 Polytope Approximation

In this section we consider how the results of the previous section5 can be applied to polytope
approximation. Our main result is presented in the following theorem, which establishes a
uniform bound on the complexity of convex approximation based on area, rather than diameter.
As mentioned in the introduction, this bound is never significantly worse that Dudley’s, but
may be significantly better for skinny convex bodies. The proof appears later in this section.

Theorem 4.1 Let K ⊂ Rd be a convex body such that the width of K in any direction is at
least ε. There exists an ε-approximating polytope P with number of facets

O(r log r), for r =

√
area(K)

ε(d−1)/2
.

(This can be adapted to show that there exists an approximating polytope with O(r log r)
vertices instead of facets.) Note that given that an approximating polytope P with O(r log r)
facets exists, then a polytope with at most O(r log2 r) facets can be constructed using [9]. In
order to prove the above theorem, we start by stating a lemma that connects dual caps and
polytope approximation. The proof follows from the works of Dudley [12] and Bronshteyn and
Ivanov [5]. An analogous lemma relates caps and polytope approximation.

Lemma 4.2 Let N be any set of points on ∂K that stabs the set of all ε-dual caps of K. Then
the polytope defined by tangent planes constructed at the points of N is an ε-approximation of
K.

In order to use ε-nets to stab all dual caps, we need to show that the range spaces of dual
caps have constant VC-dimension. Throughout, S denotes the sphere of radius 3 centered at
the origin.

Lemma 4.3 Let K ⊂ Rd be a convex body contained within the unit ball centered at the origin.
All the following range spaces (X, R) have VC-dimension at most d + 1.

5The results of Section 3 rely on the assumption that K is ε-smooth. Given a general (non-smooth) convex
body, we can apply a simple reduction to the smooth case, as follows. First, we dilate K by performing a
Minkowski sum with a Euclidean ball of radius ε/2. Let K′ be the result. Observe that the Hausdorff distance
between K′ and K is ε/2 and K′ is (ε/2)-smooth. Under our assumption that the width of K in any direction is
at least ε, this dilation does not increase the surface area of K by more than a constant factor. Next, we apply
the results of this section and subsequent approximations, but with the parameter ε set to ε/2. The combination
of the two error bounds (ε/2 from dilation and ε/2 from subsequent approximations) results in a total error of ε.
The modification of the ε term only affects the constant factors.
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(1) X = ∂K and R is the set of ε-dual caps.
(2) X = S and R is the set of Voronoi cells of the ε-dual caps.

Proof : First, we consider an additional range space define by X = ∂K and R is the set of ε-
caps. An ε-cap only contains the points that the corresponding halfspace contains, and therefore
has VC-dimension upper bounded by the VC-dimension of d-dimensional halfspaces, which is
d + 1. The range space (1) is then equivalent to d-dimensional halfspaces by point-hyperplane
duality. To prove the lemma for (2), note that the Voronoi mapping defines a bijection between
∂K and S, and therefore this range space is combinatorially identical to the previous one. ut

Proof : (of Theorem 4.1)
Without loss of generality, we may assume that K has been uniformly scaled to lie within

a unit ball centered at the origin and that ε has been scaled accordingly (because the ratio
area(K)/ε(d−1) is unaffected by uniform scaling). By Lemma 4.2, if we can stab all ε-dual caps
of K with O(r log r) points, then we have an ε-approximating polytope with the same number
of facets. We distinguish between two types of ε-dual caps. A dual cap D is of type 1, if
area(D) ≥

√
area(K) · ε(d−1)/2, and otherwise it is of type 2.

We use different strategies for stabbing the two types of dual caps. For dual caps of type 1,
we use standard machinery to build a (1/r)-net N1 of size O(r log r) in the range space (1) of
Lemma 4.3. The net N1 stabs all dual caps of type 1 because of their sufficiently large area.

From Lemma 3.1, for a type-2 dual cap D we have area(Vor(D)∩S) = Ω(ε(d−1)/2/
√

area(K)).
In order to stab type-2 dual caps, we build an O(1/r)-net N2 for the range space (2) of
Lemma 4.3. The net N2 stabs the Voronoi cells of all type-2 dual caps. We then select the
nearest neighbor on ∂K for each point of N2, obtaining a set N ′

2. The set N ′
2 stabs all dual

caps of type 2, which concludes the proof. ut

5 Polytope Membership Queries

Consider a convex polytope K ⊂ [−1, 1]d. In polytope membership queries, we are given a query
point q, and are to determine whether q lies inside K subject to an error bound ε. Points within
distance ε of the boundary of K may be reported as either inside or outside of K. A simple
and natural algorithm, called SplitReduce, was presented in [2] for preprocessing K in order to
answer such queries efficiently. Although an initial analysis was given in [2], the complexity
of the resulting data structure remains a challenging problem. In this section, we show that,
without increasing storage, it is possible to improve the query time bounds to essentially the
square root of those given in [2].

Before describing the algorithm, we need a definition. We say that P is an ε-approximation
of K within a quadtree box Q if, for any point x ∈ Q, the following holds: (a) if x ∈ K, then
x ∈ P , and (b) if x is at distance at least ε from K, then x 6∈ P . Note that this definition implies
that, for any query point x ∈ Q, we can correctly answer ε-approximate polytope membership
queries with respect to K by checking whether x ∈ P .

The SplitReduce algorithm is presented below. It is given the polytope K ⊂ [−1, 1]d, the
approximation parameter ε, and the desired query time t. The initial quadtree box is Q =
[−1, 1]d.
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SplitReduce(Q):
1. Let P be an ε-approximation of K within Q.
2. If the number of facets |P | ≤ t, then Q stores the hyperplanes bounding P .
3. Otherwise, split Q into 2d quadtree boxes and invoke SplitReduce on each such box.

The output of SplitReduce(Q) is a quadtree whose leaf cells induce a subdivision of Q.
Each leaf cell Q̂ stores a set of halfspaces of size at most t whose intersection approximates K
within Q̂. Let t(Q̂) denote the size of this set. The storage of this quadtree is defined as the
total number of halfspaces stored over all the leaf cells. A query is answered by performing
a point location in the quadtree followed by a brute force inspection of the halfspaces in the
resulting leaf node. Because cells of diameter ε are not subdivided, the height of the quadtree,
and hence the time for point location, is O(log(1/ε)). For the sake of analysis, let us make
the simplifying assumption that the number t(Q̂) of facets computed in Step 1 is minimum. (If
instead, Clarkson’s approximation algorithm is used [9], the query time increases by a negligible
factor of O(log(1/ε)).)

The main result of this section is the following space-time tradeoff for SplitReduce.

Theorem 5.1 Given a polytope K of diameter 1, an approximation bound ε > 0 and a real
constant α ≥ 2, it is possible to answer ε-approximate polytope membership queries in time
t = 1/ε(d−1)/(2α) log(1/ε) ≥ 1 from a data structure of space

O

(
(1/ε)(d−1)

“

1− 1

2blog2 αc−
blog2 αc−1

α

”)
.

In order to establish the tradeoff, we first show how to generalize Lemma 4.2 to the techni-
cally more challenging context of approximating K within a box Q.

Lemma 5.2 Let K be a convex body (of arbitrary diameter). Let Q be a quadtree box that
intersects ∂K. Let E be the portion of ∂K that is within distance

√
ε of Q. Let N be any

set of points that stab the set of all
√

ε-restricted ε-dual caps contained within E, and let P
be the polytope defined by the tangent planes constructed at the points of N . Then P is an
ε-approximation of K within Q.

Proof : Let x be any point in Q. Since P is defined by the planes tangent to K, it follows that
if x ∈ K then x ∈ P . Next suppose that x is at distance at least ε from K. We will show
that x 6∈ P , which will prove the lemma. Consider the line segment joining x to the point in
K ∩ Q that is closest to it. By continuity, there must be a point q on this segment that is at
distance exactly ε from K. Since Q is convex, this segment and, hence, q must be contained in
Q. Consider the

√
ε-restricted dual cap whose apex is q. Note that this dual cap is contained

within E, and so there is a point of N that stabs it. Clearly, the tangent plane at this point
separates q from K, and hence x from K. Thus x 6∈ P , which completes the proof. ut

As in [2], we start by analyzing the low space case. Theorem 5.1 can then be proved by
induction. Our key idea is to use the machinery we developed in Section 3. The proof of the
following lemma is similar to the proof of Theorem 4.1, but using Lemma 3.4 (with δ set to√

ε) instead of Lemma 3.1. Recall that S is the Dudley hypersphere, which we defined as the
(d − 1)-dimensional sphere of radius 3 centered at the origin.

Lemma 5.3 Let K, Q and E be as in Lemma 5.2, such that K is ε-smooth and Q is of diameter
at least

√
ε. Further, let E be contained within a ball of unit radius centered at the origin. Then

it is possible to ε-approximate K within Q by a polytope with number of facets

O(r log r), for r =

√
area(E) · area (Vor(E) ∩ S)

ε(d−1)/2
.
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Proof : By Lemma 5.2, if we can stab the set of all
√

ε-restricted ε-dual caps contained within
E with O(r log r) points, then we have an ε-approximating polytope within Q with O(r log r)
facets. To prove this lemma, we distinguish between two types of such dual caps. A dual cap
D is of type 1, if area(D) ≥

√
area(E)/area(Vor(E) ∩ S) · ε(d−1)/2, and otherwise it is of type

2.
By a straightforward generalization of Lemma 4.3, it follows that both types of restricted

dual caps are of constant VC-dimension. We use different strategies for stabbing the two types
of dual caps. For dual caps of type 1, we use standard machinery to build a (1/r)-net N1, of
size O(r log r) for the range space (1) of Lemma 4.3, considering only the portion E of ∂K. The
net N1 stabs all dual caps of type 1 because of their sufficiently large area.

It follows from Lemma 3.4 that for a type-2 dual cap D, we have

area (Vor(D) ∩ S) = Ω

(
ε(d−1)/2

√
area (Vor(E) ∩ S)

area(E)

)
.

In order to stab type-2 caps, we build an O(1/r)-net N2 of size O(r log r) for the range space
(2) of Lemma 4.3, considering only Vor(E)∩ S. The net N2 stabs the Voronoi cell of all type-2
caps. We then select the nearest neighbor on ∂K for each point of N2, obtaining a set N ′

2. The
set N ′

2 stabs all caps of type 2, which concludes the proof. ut

The following lemma will be useful in establishing the storage bounds. Throughout the
remainder of the analysis, Q will denote a quadtree box, and T will denote the quadtree produced
by SplitReduce(Q) for some choice of parameters t ≥ 1 and ε < diam(Q). Given T , let T ′ denote
the subtree of T induced by cells of diameter at least

√
ε diam(Q)/2. Let L1 denote the leaf

cells of T ′ that are not subdivided further (i.e., they are leaf cells of T ), and let L2 denote the
remaining leaf cells of T ′. Observe that if Q̂ is any cell of L2, then the diameter of Q̂ is at most√

ε diam(Q), since otherwise its children would have diameter more than
√

ε diam(Q)/2, and
Q̂ would not be a leaf cell of T ′.

Lemma 5.4

(i)
∑

bQ∈L1
t(Q̂) = O((diam(Q)/ε)(d−1)/2).

(ii) |L2| = O

((
log t

t

)2
·
(

diam(Q)
ε

)(d−1)/2
)

.

Proof : The proof of (i) follows from the proof of Lemma 2.2 in [2]. For completeness, we
provide a short sketch. Dudley’s approximation yields an ε-approximation to K ∩ Q as the
intersection of O((diam(Q)/ε)(d−1)/2) halfspaces. In Dudley’s construction, each of these halfs-
paces is responsible for approximating a region of K’s boundary of diameter O(

√
ε diam(Q)).

By a simple packing argument, each halfspace is useful in this manner for only a constant
number of cells Q̂ ∈ L1, which establishes assertion (i).

To prove (ii), let Q̂ be any cell of L2. Recall that
√

ε diam(Q)/2 ≤ diam(Q̂) ≤
√

ε diam(Q).
Let ε̂ = ε/(4 diam(Q)). For the remainder of this proof, we take the center of Q as the origin
and assume that we have scaled space so that Q has diameter 1. Note that in this scaled space√

ε̂ ≤ diam(Q̂) ≤ 2
√

ε̂. As usual, we let S denote the Dudley hypersphere, defined as the
(d − 1)-dimensional sphere of radius 3 centered at the origin. Let K̂ be the Minkowski sum of
K and a ball of radius ε̂ (thus, K̂ is ε̂-smooth). Let Ê denote the portion of ∂K̂ that is within
distance at most

√
ε̂ of Q̂. Note that Ê is contained within the unit ball centered at the origin.

The intuition underlying our approach for bounding the number of cells in L2 is to show
that area(Vor(Ê) ∩ S) must be large. Since the area of S is a constant, we will show that this
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implies that there cannot be too many cells in L2. In order to show that area(Vor(Ê) ∩ S) is
large, we will apply Lemma 5.3 and show that otherwise we could have approximated K within
Q̂ to the desired accuracy with fewer than t facets and Q̂ would then not have been subdivided
further. We now make these ideas precise.

We first prove that area(Vor(Ê)∩S) = Ω((t/ log t)2 · ε̂(d−1)/2). For the sake of contradiction,
suppose that area(Vor(Ê) ∩ S) ≤ c · (t/ log t)2 · ε̂(d−1)/2 for a suitable constant c. Clearly, the
conditions of Lemma 5.3 are satisfied with K̂, Q̂, Ê, and ε̂ in place of K,Q, E, and ε, respectively.
Therefore, K̂ can be ε̂-approximated within Q̂ by a polytope with m facets, where

m ≤ c1r log r, for r =

√
area(Ê) · area

(
Vor(Ê) ∩ S

)
ε̂(d−1)/2

,

where c1 is the constant hidden in the O-notation of Lemma 5.3. Note that an ε̂ absolute error
in the space after scaling corresponds to ε̂ ·diam(Q) = ε/4 absolute error prior to scaling. Thus,
prior to scaling, m facets suffice to provide an ε-approximation of K within Q̂. To compute m,
observe that

area(Ê) ≤ c2 diam(Q̂)d−1 ≤ c2 2d−1 ε̂(d−1)/2,

where c2 is some constant. By our assumption, area(Vor(Ê) ∩ S) ≤ c · (t/ log t)2 · ε̂(d−1)/2.
Substituting these upper bounds on areas, we obtain

r ≤
√

c2 2d−1 ε̂(d−1)/2 · c (t/ log t)2 ε̂(d−1)/2

ε̂(d−1)/2

≤
√

2d−1c2c ·
t

log t
.

Recalling that m ≤ c1r log r, it is easy to see that we can make m < t by choosing c to
be sufficiently small. Therefore, Q̂ should not have been subdivided further, which contra-
dicts the fact that Q̂ ∈ L2. Thus area(Vor(Ê) ∩ S) = Ω((t/ log t)2 · ε̂(d−1)/2) = Ω((t/ log t)2 ·
(ε/diam(Q))(d−1)/2).

Since the area of S is a constant and any point of S can be contained in Vor(Ê) for at
most a constant number of cells Q̂ ∈ L2, it follows that the cardinality of L2 is O((log t/t)2 ·
(diam(Q)/ε)(d−1)/2), which completes the proof. ut

We are now ready to present our improved analysis of the low space case.

Lemma 5.5 The output of SplitReduce(Q) for

t ≥
(

diam(Q)
ε

)(d−1)/8

log
(

diam(Q)
ε

)
≥ 1

is a quadtree with storage O((diam(Q)/ε)(d−1)/2).

Proof : Let T denote the quadtree produced by the algorithm. We will show that
∑

t(Q̂) over
all leaf cells Q̂ of T is O((diam(Q)/ε)(d−1)/2), which will establish the desired storage bound.
Recall T ′, L1, and L2 as defined just before Lemma 5.4. By Lemma 5.4(i),

∑
bQ∈L1

t(Q̂) =
O((diam(Q)/ε)(d−1)/2).

Next, consider the set L2 of cells. Let Q̂ be any cell of L2. Recall that
√

ε diam(Q)/2 ≤
diam(Q̂) ≤

√
ε diam(Q). Since t ≥ (diam(Q)/ε)(d−1)/8, it follows that t ≥ (diam(Q̂)/ε)(d−1)/4 ≥

1 for ε ≤ diam(Q)/4 (if ε > diam(Q)/4 then the lemma holds trivially).
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Lemma 2.2 in [2] states that the output of SplitReduce(Q̂) for t ≥ (diam(Q̂)/ε)(d−1)/4 ≥ 1 is
a quadtree with storage O((diam(Q̂)/ε)(d−1)/2). Therefore, the storage for the subtree rooted at
Q̂ is at most O((diam(Q̂)/ε)(d−1)/2) = O((diam(Q)/ε)(d−1)/4). Also, by Lemma 5.4(ii), |L2| =
O((log t/t)2 ·(diam(Q)/ε)(d−1)/2) = O((diam(Q)/ε)(d−1)/4), where we have used the lower bound
on t given in the statement of the lemma. It follows that the total storage for the subtrees rooted
at cells of L2 is at most O((diam(Q)/ε)(d−1)/4 · (diam(Q)/ε)(d−1)/4) = O((diam(Q)/ε)(d−1)/2).
This completes the proof. ut

Using Lemma 5.5 as the base case, we now extend the space-time tradeoff to other query
times.

Theorem 5.6 Let α ≥ 2 be a constant. The output of SplitReduce(Q) for

t ≥
(

diam(Q)
ε

)(d−1)/(2α)

log
(

diam(Q)
ε

)
≥ 1

is a quadtree with storage

O

(diam(Q)
ε

)(d−1)
“

1− 1

2blog2 αc−
blog2 αc−1

α

”

 .

Proof : Let k = blog2 αc. Our proof proceeds by induction on a constant number of steps
k. The base case k = 1 corresponds to Lemma 5.5. Next, assume that the theorem holds for
1, . . . , k − 1, that is, for α < 2k. We need to prove that the theorem holds for 2k ≤ α < 2k+1.

Let T denote the quadtree produced by the algorithm with 2k ≤ α < 2k+1. Recall T ′, L1, and
L2 as defined just before Lemma 5.4. By Lemma 5.4(i),

∑
bQ∈L1

t(Q̂) = O((diam(Q)/ε)(d−1)/2),
and thus the storage for the leaf cells of L1 satisfies the bound of the theorem.

We next consider the set L2 of cells. Let Q̂ be any cell of L2. Recall that
√

ε diam(Q)/2 ≤
diam(Q̂) ≤

√
ε diam(Q). It follows that

t ≥

(
diam(Q̂)

ε

)(d−1)/(2α′)

log

(
diam(Q̂)

ε

)
≥ 1

where α′ = α/2 for ε ≤ diam(Q)/16 (if ε > diam(Q)/16, then the theorem holds trivially).
Therefore, we can use the induction hypothesis to obtain the following storage for each cell
Q̂ ∈ L2:

O

(diam(Q̂)
ε

)(d−1)
“

1− 1

2k−1 −
k−2
α′

”

 = O

(diam(Q)
ε

)(d−1)
“

1
2
− 1

2k − k−2
α

”

 .

Also, by Lemma 5.4(ii), |L2| = O((log t/t)2 · (diam(Q)/ε)(d−1)/2) = O((diam(Q)/ε)(d−1)( 1
2
− 1

α)),
where we have used the value of t given in the statement of the theorem. It follows that the
total storage for the subtrees rooted at cells of L2 is at most

O

(diam(Q)
ε

)(d−1)
“

1− 1

2k − k−1
α

”

 .

This completes the proof. ut

Recalling that the time for locating the leaf cell containing the query point is O(log(1/ε)),
Theorem 5.1 follows as an immediate consequence.

18



References

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation via core-
sets. In J. E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial and Computational
Geometry. MSRI Publications, 2005.

[2] S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries.
In Proc. 43rd Annu. ACM Sympos. Theory Comput., pages 579–586, 2011.

[3] S. Arya, T. Malamatos, and D. M. Mount. Space-time tradeoffs for approximate nearest
neighbor searching. J. Assoc. Comput. Mach., 57:1–54, 2009.

[4] J. Bourgain and V. D. Milman. New volume ratio properties for convex symmetric bodies.
Inventiones Mathematicae, 88:319–340, 1987.

[5] E. M. Bronshteyn and L. D. Ivanov. The approximation of convex sets by polyhedra.
Siberian Math. J., 16:852–853, 1976.

[6] E. M. Bronstein. Approximation of convex sets by polytopes. Journal of Mathematical
Sciences, 153(6):727–762, 2008.

[7] T. M. Chan. Fixed-dimensional linear programming queries made easy. In Proc. 12th
Annu. Sympos. Comput. Geom., pages 284–290, 1996.

[8] T. M. Chan. Optimal partition trees. In Proc. 26th Annu. Sympos. Comput. Geom., pages
1–10, 2010.

[9] K. L. Clarkson. Algorithms for polytope covering and approximation. In Proc. 3th Work-
shop Algorithms Data Struct., pages 246–252, 1993.

[10] K. L. Clarkson. Building triangulations using epsilon-nets. In Proc. 38th Annu. ACM
Sympos. Theory Comput., pages 326–335, 2006.

19



[11] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer, 3rd edition, 2010.

[12] R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. Approx.
Theory, 10(3):227–236, 1974.

[13] R. Fleischer, K. Mehlhorn, G. Rote, E. Welzl, and C.-K. Yap. On simultaneous inner
and outer approximation of shapes. In Proc. Sixth Annu. Sympos. Comput. Geom., pages
216–224, 1990.

[14] P. M. Gruber. Asymptotic estimates for best and stepwise approximation of convex bodies
I. Forum Math., 5:521–537, 1993.

[15] J. K. Boroczky. Approximation of general smooth convex bodies. Adv. Math., 153:325–341,
2000.

[16] G. Kuperberg. From the Mahler conjecture to Gauss linking integrals. Geometric And
Functional Analysis, 18:870–892, 2008.

[17] M. A. Lopez and S. Reisner. Efficient approximation of convex polygons. Internat. J.
Comput. Geom. Appl., 10:445–452, 2000.
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[25] L. A. Santaló. An affine invariant for convex bodies of n-dimensional space. Portugaliae
Mathematica, 8:155–161, 1949. (In Spanish).

[26] R. Schneider. Polyhedral approximation of smooth convex bodies. J. Math. Anal. Appl.,
128:470–474, 1987.

[27] L. F. Toth. Approximation by polygons and polyhedra. Bull. Amer. Math. Soc., 54:431–
438, 1948.

20


	Introduction
	Our Results
	Overview of Methods

	Preliminaries
	Caps, Dual Caps, and Areas
	Area Product Bounds: Unrestricted Case
	Area Product Bounds: Restricted Case

	Polytope Approximation
	Polytope Membership Queries

