Introduction Convex Proof 1980 Proof New Proof Conclusion

On the Longest Flip Sequence to Untangle Segments in the Plane

Guilherme da Fonseca – Aix-Marseille Université and LIS, France Yan Gerard – Université Clermont Auvergne and LIMOS, France Bastien Rivier – Université Clermont Auvergne and LIMOS, France Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion

Section 1

Introduction

Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion ■ 2d Euclidean TSP (NP-hard):

Input: A set of n points called *cities*.

Output: The shortest tour (polygon whose vertices are the cities).

Heuristics output tours with crossings.

A tour with crossings can be shortened using flips:

choose two crossing segments and remove them,
 choose two non-crossing segments and insert them
 repeat until there are no crossings

Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion

■ 2d Euclidean TSP (NP-hard):

Input: A set of n points called *cities*.

Output: The shortest tour (polygon whose vertices are the cities).

Heuristics output tours with crossings.

• A tour with crossings can be shortened using flips:

choose two crossing segments and remove them,
choose two non-crossing segments and insert them,
repeat until there are no crossings.

Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion ■ 2d Euclidean TSP (NP-hard):

Input: A set of n points called *cities*.

Output: The shortest tour (polygon whose vertices are the cities).

- A tour with crossings can be shortened using flips:
 choose two crossing segments and remove them,
 choose two non-crossing segments and insert them,
 - repeat until there are no crossings.

Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion ■ 2d Euclidean TSP (NP-hard):

Input: A set of n points called *cities*.

Output: The shortest tour (polygon whose vertices are the cities).

- A tour with crossings can be shortened using flips:
 - choose two crossing segments and remove them,
 - choose two non-crossing segments and insert them,
 - **repeat** until there are no crossings.

Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion ■ 2d Euclidean TSP (NP-hard):

Input: A set of n points called *cities*.

Output: The shortest tour (polygon whose vertices are the cities).

- A tour with crossings can be shortened using flips:
 choose two crossing segments and remove them,
 - choose two non-crossing segments and insert them,
 - repeat until there are no crossings.

Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion

- 2d Euclidean TSP (NP-hard):
- Input: A set of n points called *cities*.

Output: The shortest tour (polygon whose vertices are the cities).

- A tour with crossings can be shortened using flips:
 - choose two crossing segments and remove them,
 - choose two non-crossing segments and insert them,
 - repeat until there are no crossings.

Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion ■ 2d Euclidean TSP (NP-hard):

Input: A set of n points called *cities*.

Output: The shortest tour (polygon whose vertices are the cities).

- A tour with crossings can be shortened using flips:
 - choose two crossing segments and remove them,
 - choose two non-crossing segments and insert them,
 - repeat until there are no crossings.

Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion

- 2d Euclidean TSP (NP-hard):
- Input: A set of *n* points called *cities*.

Output: The shortest tour (polygon whose vertices are the cities).

- A tour with crossings can be shortened using flips:
 - choose two crossing segments and remove them,
 - choose two non-crossing segments and insert them,
 - repeat until there are no crossings.

An infinite flip sequence?

Measuring progress with a potential, i.e. an integer function on tours whi

i.e., an integer function on tours which is

bounded

decreasing at each step.

Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion

Introduction

Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion

Introduction

An infinite flip sequence? No.

Measuring progress with a potential,

i.e., an integer function on tours which is:

bounded

decreasing at each step.

Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion

- An infinite flip sequence? No.
- Measuring progress with a potential,
 - i.e., an integer function on tours which is:
 - bounded
 - decreasing at each step.

Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion

- An infinite flip sequence? No.
- Measuring progress with a potential,
 - i.e., an integer function on tours which is:
 - bounded
 - decreasing at each step.

$$1 \leq \underbrace{\Phi_{\text{rank when sorted by length}(T)}_{\text{potential of the tour }T} \leq n!$$

The deletion choice may impact the number of flips.

Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion

Introduction

- We know of no clever way to choose.
- **D**(n): number of flips in the longest flip sequences.
- We want bounds on $\mathbf{D}(n)$.

• The deletion choice may impact the number of flips.

- We know of no clever way to choose.
- **D**(n): number of flips in the longest flip sequences.
- We want bounds on $\mathbf{D}(n)$.

Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion

Introduction

Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion • The deletion choice may impact the number of flips.

- We know of no clever way to choose.
- **D**(n): number of flips in the longest flip sequences.
- We want bounds on $\mathbf{D}(n)$.

Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion • The deletion choice may impact the number of flips.

• We know of no clever way to choose.

D(n): number of flips in the longest flip sequences.

• We want bounds on $\mathbf{D}(n)$.

Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion • The deletion choice may impact the number of flips.

- We know of no clever way to choose.
- **D**(n): number of flips in the longest flip sequences.
- We want bounds on $\mathbf{D}(n)$.

The Flip Graph

• The deletion choice may impact the number of flips.

Untangling Tours Potential Longest Sequences Bounds Convex Proof 1980 Proof New Proof Conclusion

Introduction

Previous Bounds on the Longest Flip Sequences

Introduction Untangling Tours Potential Longest Sequences Bounds Convex Proof

1980 Proof New Proof Conclusion

Previous Bounds on the Longest Flip Sequences

New Bound

Convex Proof

Proving $\mathbf{D}_{convex}(n) = O(n^2)$

Introduction Convex Proof 1980 Proof New Proof

- $\Phi_{\text{crossings}}(T)$: number of crossings in the tour T.
- $\Phi_{\text{crossings}} = O(n^2)$
- $\Phi_{\text{crossings}}$ decreases at each flip:

New Proof

Conclusion

Section 3

1980 Proof

From Segments to Lines

Introduction Convex Proof 1980 Proof Segments to Lines

Line Potentials Bounded Decreasing Crossing New Proof

Conclusion

• $\Phi_{\text{crossings}}$ may not decrease at each flip:

- Idea: consider line-segment crossings instead.
- *L*: lines through two cities.
- $\Phi_{\ell}(T)$: number of crossings with a line ℓ in the tour T.
- $\bullet \Phi_L = \sum_{\ell \in L} \Phi_\ell$
- $O(n^2)$ lines, O(n) crossings per line $\implies \Phi_L = O(n^3)$.
- Φ_ℓ does not increase at a flip.
- Φ_L decreases at each flip.

From Segments to Lines

Introduction Convex Proof 1980 Proof

Line Potentials

Bounded Decreasing

Crossing New Proof

- $\Phi_{\text{crossings}}$ may not decrease at each flip:
- Idea: consider line-segment crossings instead.
- *L*: lines through two cities.
- $\Phi_{\ell}(T)$: number of crossings with a line ℓ in the tour T.
- $\blacksquare \ \Phi_L = \sum_{\ell \in L} \Phi_\ell$
- $O(n^2)$ lines, O(n) crossings per line $\implies \Phi_L = O(n^3)$.
- Φ_ℓ does not increase at a flip.
- Φ_L decreases at each flip.

Line Potentials

- Introduction Convex Proof 1980 Proof Segments to Lines Line Potentials Bounded Decreasing Crossing New Proof Conclusion
- $\Phi_{\text{crossings}}$ may not decrease at each flip:
- Idea: consider line-segment crossings instead.
- *L*: lines through two cities.
- $\Phi_{\ell}(T)$: number of crossings with a line ℓ in the tour T.
- $\Phi_L = \sum_{\ell \in L} \Phi_\ell$
- $O(n^2)$ lines, O(n) crossings per line $\implies \Phi_L = O(n^3)$.
- Φ_ℓ does not increase at a flip.
- Φ_L decreases at each flip.

Φ_L is Bounded

- Introduction Convex Proof 1980 Proof Segments to Lines Line Potentials Bounded Decreasing Crossing New Proof Conclusion
- $\Phi_{\text{crossings}}$ may not decrease at each flip:
- Idea: consider line-segment crossings instead.
- *L*: lines through two cities.
- $\Phi_{\ell}(T)$: number of crossings with a line ℓ in the tour T.
- $\blacksquare \Phi_L = \sum_{\ell \in L} \Phi_\ell$
- $O(n^2)$ lines, O(n) crossings per line $\implies \Phi_L = O(n^3)$.
- Φ_ℓ does not increase at a flip.
- Φ_L decreases at each flip.

Φ_L Decreases

Introduction Convex Proof 1980 Proof Segments to Lines Line Potentials Bounded Decreasing Crossing

New Proof

- $\blacksquare \ \Phi_{\text{crossings}}$ may not decrease at each flip:
- Idea: consider line-segment crossings instead.
- *L*: lines through two cities.
- $\Phi_{\ell}(T)$: number of crossings with a line ℓ in the tour T.
- $\Phi_L = \sum_{\ell \in L} \Phi_\ell$
- $O(n^2)$ lines, O(n) crossings per line $\implies \Phi_L = O(n^3)$.
- Φ_ℓ does not increase at a flip.
- Φ_L decreases at each flip.

What Is a Crossing

Introduction Convex Proof 1980 Proof Segments to Lines Line Potentials Bounded Decreasing Crossing

New Proof Conclusion

Introduction Convex Proof 1980 Proof

New Proof Near Convex Mixed Potential Bounded Decreasing Conclusion

••••

New Proof

Near Convex Sets

Introduction Convex Proof 1980 Proof New Proof

Near Convex Mixed Potential Bounded Decreasing

Conclusion

• Near Convex sets: the *n* points are *convex* except *t* of them.

$$n = 9$$
 $t = 3$

- L': lines through at least one non-convex point.
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not,

Convex Proof 1980 Proof New Proof Near Convex Mixed Potential Bounded Decreasing Conclusion

Introduction

- L': lines through at least one non-convex point.
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not,

Convex Proof 1980 Proof New Proof Near Convex Mixed Potential Bounded Decreasing

Introduction

Introduction Convex Proof

1980 Proof

New Proof Near Convex Mixed Potential Bounded Decreasing

- L': lines through at least one non-convex point.
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not,

- L': lines through at least one non-convex point.
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not,

Convex Proof 1980 Proof New Proof Near Convex Mixed Potential Bounded Decreasing Conclusion

Introduction

- L': lines through at least one non-convex point.
 - Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
 - Case 2. If not,

Convex Proof 1980 Proof New Proof Near Convex Mixed Potential Bounded Decreasing

Introduction

- \blacksquare L': lines through at least one non-convex point.
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not,

Convex Proof 1980 Proof New Proof Near Convex Mixed Potential Bounded Decreasing

Introduction

- L': lines through at least one non-convex point.
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not,

Convex Proof 1980 Proof New Proof Near Convex Mixed Potential Bounded Decreasing

Introduction

- L': lines through at least one non-convex point.
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not,

Convex Proof 1980 Proof New Proof Near Convex Mixed Potential Bounded Decreasing

Introduction

Introduction

Convex Proof

1980 Proof

New Proof Near Convex Mixed Potential Bounded Decreasing

- L': lines through at least one non-convex point. O(nt)
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not,

Introduction

Convex Proof

1980 Proof

New Proof Near Convex Mixed Potential Bounded Decreasing

- L': lines through at least one non-convex point. O(nt)
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not,

Introduction

Convex Proof

1980 Proof

New Proof Near Convex Mixed Potential Bounded Decreasing

- L': lines through at least one non-convex point. O(nt)
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not,

- L': lines through at least one non-convex point. O(nt)
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- **Case 2.** If not, if p is non-convex: \checkmark

Introduction Convex Proof 1980 Proof New Proof

Near Convex Mixed Potential Bounded Decreasing

Introduction

Convex Proof

1980 Proof

New Proof Near Convex Mixed Potential Bounded Decreasing

- L': lines through at least one non-convex point. O(nt)
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not, if r is non-convex: \checkmark

Introduction

Convex Proof

1980 Proof

New Proof Near Convex Mixed Potential Bounded Decreasing

- L': lines through at least one non-convex point. O(nt)
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not,

Introduction

Convex Proof

1980 Proof

New Proof Near Convex Mixed Potential Bounded Decreasing

- L': lines through at least one non-convex point. O(nt)
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not, if p, q, s, t are convex:

- L': lines through at least one non-convex point. O(nt)
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- **Case 2.** If not, if p, q, s, t are convex:

Introduction Convex Proof 1980 Proof New Proof Near Convex

Mixed Potential Bounded Decreasing

- L': lines through at least one non-convex point. O(nt) \cup lines through two consecutive convex points. O(n)
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not, if p, q, s, t are convex:

Introduction Convex Proof 1980 Proof New Proof

Near Convex Mixed Potential Bounded Decreasing

Does Φ Decreases? Yes!

- L': lines through at least one non-convex point. O(nt) \cup lines through two consecutive convex points. O(n)
- Case 1. If $\Phi_{\text{crossings}}$ decreases, then so does Φ (because $\Phi_{L'}$ does not increase) \checkmark
- Case 2. If not, if p, q, s, t are convex: \checkmark

Introduction Convex Proof 1980 Proof New Proof

Near Convex Mixed Potential Bounded Decreasing

Introduction Convex Proof 1980 Proof New Proof Conclusion

Tours to Segments

Section 5

From Tours to Segments

- Being a tour is not used in the proofs.
- A flip choice may preserve:
 - nothing special, i.e., being a set of n segments ightarrow \mathbf{D}
 - \blacksquare being a red-blue matching $\rightarrow \mathbf{D}_{\text{RB}}$
 - being a tour \rightarrow \mathbf{D}_{TSP}

D, \mathbf{D}_{RB} , \mathbf{D}_{TSP} are the same asymptotically.

Introduction Convex Proof 1980 Proof New Proof Conclusion Tours to Segments

Conclusion

Introduction Convex Proof 1980 Proof New Proof Conclusion Tours to Segments

$$\begin{array}{rcccc} n^2 &\preccurlyeq & \mathbf{D}_{\mathsf{convex}}(n) &\preccurlyeq & n^2 \\ \\ n^2 &\preccurlyeq & \mathbf{D}(n,t) & \preccurlyeq & n^2t \\ \\ n^2 &\preccurlyeq & \mathbf{D}(n) & \preccurlyeq & \underbrace{n^2}_{\mathsf{2016 \ \mathsf{conjecture}}} \preccurlyeq & n^3 \end{array}$$

Thank you!

Reductions

Introduction Convex Proof 1980 Proof New Proof Conclusion Tours to Segments

$$2 D(n) \le D_{\mathsf{RB}}(2n) \le D(2n)$$

$$2D_{\mathsf{RB}}(n) \leq D_{\mathsf{TSP}}(3n) \leq D(3n)$$

Distinct Flips

- The same pair of segments can be flipped multiple times in the same sequence.
- Counting distinct flips means that we do not count this multiplicity.
- A balancing argument:
 - There are $O(\frac{n^3}{k})$ flips decreasing Φ_L by at least k.
 - There are $O(n^2k^2)$ flips decreasing Φ_L by less than k:
 - We enumerate them by sweeping a line.
 - We choose $k = n^{1/3}$.

Introduction Convex Proof 1980 Proof New Proof Conclusion Tours to Segments