On the Longest Flip Sequence to Untangle Segments in the Plane

Guilherme da Fonseca - Aix-Marseille Université and LIS, France
Yan Gerard - Université Clermont Auvergne and LIMOS, France Bastien Rivier - Université Clermont Auvergne and LIMOS, France

Section 1

Introduction

Motivation: Untangling TSP Tours

- 2d Euclidean TSP (NP-hard):

Input: A set of n points called cities.
Output: The shortest tour (polygon whose vertices are the cities).
■ Heuristics output tours with crossings.

- A tour with crossings can be shortened using flips:

Motivation: Untangling TSP Tours

- 2d Euclidean TSP (NP-hard):

Input: A set of n points called cities.
Output: The shortest tour (polygon whose vertices are the cities).
■ Heuristics output tours with crossings.

- A tour with crossings can be shortened using flips:
- choose two crossing segments and remove them,
- choose two non-crossing segments and insert them,
- repeat until there are no crossings

Motivation: Untangling TSP Tours

- 2d Euclidean TSP (NP-hard):

Input: A set of n points called cities.
Output: The shortest tour (polygon whose vertices are the cities).
■ Heuristics output tours with crossings.

- A tour with crossings can be shortened using flips:
- choose two crossing segments and remove them,
- choose two non-crossing segments and insert them,
- repeat until there are no crossings.

Motivation: Untangling TSP Tours

- 2d Euclidean TSP (NP-hard):

Input: A set of n points called cities.
Output: The shortest tour (polygon whose vertices are the cities).
■ Heuristics output tours with crossings.

- A tour with crossings can be shortened using flips:
- choose two crossing segments and remove them,
- choose two non-crossing segments and insert them,

- repeat until there are no crossings.

Motivation: Untangling TSP Tours

- 2d Euclidean TSP (NP-hard):

Input: A set of n points called cities.
Output: The shortest tour (polygon whose vertices are the cities).
■ Heuristics output tours with crossings.

- A tour with crossings can be shortened using flips:
- choose two crossing segments and remove them,
- choose two non-crossing segments and insert them,

Motivation: Untangling TSP Tours

- 2d Euclidean TSP (NP-hard):

Input: A set of n points called cities.
Output: The shortest tour (polygon whose vertices are the cities).
■ Heuristics output tours with crossings.

- A tour with crossings can be shortened using flips:
- choose two crossing segments and remove them,
- choose two non-crossing segments and insert them,
- repeat until there are no crossings.

Motivation: Untangling TSP Tours

- 2d Euclidean TSP (NP-hard):

Input: A set of n points called cities.
Output: The shortest tour (polygon whose vertices are the cities).
■ Heuristics output tours with crossings.

- A tour with crossings can be shortened using flips:
- choose two crossing segments and remove them,
- choose two non-crossing segments and insert them,
- repeat until there are no crossings.

Motivation: Untangling TSP Tours

- 2d Euclidean TSP (NP-hard):

Input: A set of n points called cities.
Output: The shortest tour (polygon whose vertices are the cities).
■ Heuristics output tours with crossings.

- A tour with crossings can be shortened using flips:
- choose two crossing segments and remove them,
- choose two non-crossing segments and insert them,
- repeat until there are no crossings.

A Potential Argument

■ An infinite flip sequence?

- Measuring progress with a potential,
i.e., an integer function on tours which is:
- bounded
- decreasing at each step.

A Potential Argument

- An infinite flip sequence? No.
- Measuring progress with a potential,
i.e., an integer function on tours which is:
- bounded
- decreasing at each step.

A Potential Argument

- An infinite flip sequence? No.

■ Measuring progress with a potential, i.e., an integer function on tours which is:

■ bounded

- decreasing at each step.

A Potential Argument

- An infinite flip sequence? No.

■ Measuring progress with a potential, i.e., an integer function on tours which is:

■ bounded

- decreasing at each step.

$$
1 \leq \underbrace{\Phi_{\text {rank }} \text { when sorted by length }(T)}_{\text {potential of the tour } T} \leq n!
$$

The Longest Flip Sequences

- The deletion choice may impact the number of flips.
- We know of no clever way to choose.
- $\mathbf{D}(n)$: number of flins in the longest flip sequences.
- We want bounds on $\mathbf{D}(n)$.

The Longest Flip Sequences

- The deletion choice may impact the number of flips.

- We know of no clever way to choose.
- $\mathbf{D}(n)$: number of flins in the longest flip sequences.
- We want bounds on $\mathrm{D}(n)$

The Longest Flip Sequences

- The deletion choice may impact the number of flips.

- We know of no clever way to choose.
- $D(m)$: number of flips in the longest flip sequences
- We want bounds on $\mathbf{D}(n)$.

The Longest Flip Sequences

- The deletion choice may impact the number of flips.

- We know of no clever way to choose.
- $\mathbf{D}(n)$: number of flips in the longest flip sequences
- We want bounds on $\mathbf{D}(n)$.

The Longest Flip Sequences

- The deletion choice may impact the number of flips.

- We know of no clever way to choose.
- $\mathbf{D}(n)$: number of flips in the longest flip sequences.
- We want bounds on $\mathbf{D}(n)$.

The Flip Graph

- The deletion choice may impact the number of flips.

- We know of no clever way to choose.

■ $\mathbf{D}(n)$: number of flips in the longest flip sequences.

- We want bounds on $\mathbf{D}(n)$.

Previous Bounds on the Longest Flip Sequences

Previous Bounds on the Longest Flip Sequences

Section 2

Convex Proof

$n^{2} \preccurlyeq \mathbf{D}_{\text {convex }}(n) \preccurlyeq n^{2}$
$n^{2} \preccurlyeq \mathbf{D}(n, t) \preccurlyeq n^{2} t$
$n^{2} \preccurlyeq \quad \mathbf{D}(n)$
$\preccurlyeq n^{3}$

- $\Phi_{\text {crossings }}(T)$: number of crossings in the tour T.

■ $\Phi_{\text {crossings }}=O\left(n^{2}\right)$

- $\Phi_{\text {crossings }}$ decreases at each flip:

Section 3

$$
\begin{aligned}
& n^{2} \preccurlyeq \mathbf{D}_{\text {convex }}(n) \preccurlyeq n^{2} \\
& n^{2} \preccurlyeq \mathbf{D}(n, t) \\
& \preccurlyeq n^{2} t
\end{aligned}
$$

$$
n^{2} \preccurlyeq \quad \mathbf{D}(n)
$$

$$
\preccurlyeq \quad n^{3}
$$

From Segments to Lines

Introduction

Convex Proof

- $\Phi_{\text {crossings }}$ may not decrease at each flip:
- Idea: consider line-segment crossings instead.
- L : lines through two cities.
- $\Phi_{\ell}(T)$: number of crossings with a line ℓ in the tour I
- $\Phi_{L}=\sum_{\ell \in L} \Phi$
- $O\left(n^{2}\right)$ lines, $O(n)$ crossings per line $\Longrightarrow \Phi_{L}=O\left(n^{3}\right)$
- Φ_{ℓ} does not increase at a flip.
- Φ_{L} decreases at each flip.

From Segments to Lines

- $\Phi_{\text {crossings }}$ may not decrease at each flip:

■ Idea: consider line-segment crossings instead.

- L: lines through two cities.
- $\Phi_{\ell}(T)$: number of crossings with a line ℓ in the tour T

- $O\left(n^{2}\right)$ lines, $O(n)$ crossings per line
- Φ_{ℓ} does not increase at a flip.
- Φ_{L} decreases at each flip
- $\Phi_{\text {crossings }}$ may not decrease at each flip:

■ Idea: consider line-segment crossings instead.

- L : lines through two cities.

■ $\Phi_{\ell}(T)$: number of crossings with a line ℓ in the tour T.
■ $\Phi_{L}=\sum_{\ell \in L} \Phi_{\ell}$

- $O\left(n^{2}\right)$ lines, $O(n)$ crossings per line $\Longrightarrow \Phi_{L}=O\left(n^{3}\right)$.
- Φ_{ℓ} does not increase at a flip.
- Φ_{I} decreases at each flin
- $\Phi_{\text {crossings }}$ may not decrease at each flip:

■ Idea: consider line-segment crossings instead.

- L : lines through two cities.
- $\Phi_{\ell}(T)$: number of crossings with a line ℓ in the tour T.

■ $\Phi_{L}=\sum_{\ell \in L} \Phi_{\ell}$
■ $O\left(n^{2}\right)$ lines, $O(n)$ crossings per line $\Longrightarrow \Phi_{L}=O\left(n^{3}\right)$.

- Φ_{ℓ} does not increase at a flip.
- Φ_{L} decreases at each flip.
- $\Phi_{\text {crossings }}$ may not decrease at each flip:

■ Idea: consider line-segment crossings instead.

- L : lines through two cities.
- $\Phi_{\ell}(T)$: number of crossings with a line ℓ in the tour T.

■ $\Phi_{L}=\sum_{\ell \in L} \Phi_{\ell}$
■ $O\left(n^{2}\right)$ lines, $O(n)$ crossings per line $\Longrightarrow \Phi_{L}=O\left(n^{3}\right)$.

- Φ_{ℓ} does not increase at a flip.
- Φ_{L} decreases at each flip.

What Is a Crossing

- A single point intersection between a line and a segment is a crossing if it is not an endpoint of the segment.

Section 4

$$
\begin{array}{llll}
n^{2} & \preccurlyeq \mathbf{D}_{\text {convex }}(n) & \preccurlyeq n^{2} \\
n^{2} & \preccurlyeq \mathbf{D}(n, t) & \preccurlyeq n^{2} t \\
n^{2} & \preccurlyeq & \mathbf{D}(n) &
\end{array}
$$

Near Convex Sets

■ Near Convex sets: the n points are convex except t of them.

$$
n=9 \quad t=3
$$

Φ : a Mixed Potential

$\Phi=O\left(n^{2} t\right)$

$\Phi=O\left(n^{2} t\right)$

$\Phi=O\left(n^{2} t\right)$

$\Phi=O\left(n^{2} t\right)$

Does Φ Decreases?

Does Φ Decreases?

1980 Proof
New Proof Near Convex Mixed Potential Bounded Decreasing Conclusion

- Case 1. If $\Phi_{\text {crossings }}$ decreases, then so does Φ (because $\Phi_{L^{\prime}}$ does not increase) \checkmark
- Case 2. If not,

Does Φ Decreases?

1980 Proof
New Proof Near Convex Mixed Potential Bounded Decreasing Conclusion

$$
\ell \in L^{\prime}
$$

- L^{\prime} : lines through at least one non-convex point. $\} O(n t)$ \cup lines through two consecutive convex points. $\} O(n)$
- Case 1. If $\Phi_{\text {crossings }}$ decreases, then so does Φ (because $\Phi_{L^{\prime}}$ does not increase) \checkmark
■ Case 2. If not, if p, q, s, t are convex:

Does Φ Decreases? Yes!

1980 Proof
New Proof Near Convex Mixed Potential Bounded Decreasing Conclusion

$$
\ell \in L^{\prime}
$$

- L^{\prime} : lines through at least one non-convex point. $\} O(n t)$ \cup lines through two consecutive convex points. $\} O(n)$
- Case 1. If $\Phi_{\text {crossings }}$ decreases, then so does Φ (because $\Phi_{L^{\prime}}$ does not increase) \checkmark
■ Case 2. If not, if p, q, s, t are convex: \checkmark

Section 5

Introduction

Convex Proof

Conclusion

$$
\begin{aligned}
& n^{2} \preccurlyeq \mathbf{D}_{\text {convex }}(n) \preccurlyeq n^{2} \\
& n^{2} \preccurlyeq \mathbf{D}(n, t) \\
& \preccurlyeq n^{2} t \\
& n^{2} \preccurlyeq \mathbf{D}(n) \quad \underbrace{}_{2016} \underbrace{n^{2}} \preccurlyeq n^{3}
\end{aligned}
$$

From Tours to Segments

- Being a tour is not used in the proofs.

■ $\mathbf{D}, \mathbf{D}_{\mathrm{RB}}, \mathbf{D}_{\mathrm{TSP}}$ are the same asymptotically.

Conclusion

Thank you!

Reductions

- $2 \mathbf{D}(n) \leq \mathbf{D}_{\mathrm{RB}}(2 n) \leq \mathbf{D}(2 n)$
- $2 \mathbf{D}_{\mathrm{RB}}(n) \leq \mathbf{D}_{\mathrm{TSP}}(3 n) \leq \mathbf{D}(3 n)$

Distinct Flips

■ The same pair of segments can be flipped multiple times in the same sequence.

- Counting distinct flips means that we do not count this multiplicity.
- A balancing argument:
- There are $O\left(\frac{n^{3}}{k}\right)$ flips decreasing Φ_{L} by at least k.
- There are $O\left(n^{2} k^{2}\right)$ flips decreasing Φ_{L} by less than k :

■ We enumerate them by sweeping a line. o

- We choose $k=n^{1 / 3}$.

