Kinetic heap-ordered trees: tight analysis and
improved algorithms

Guilherme D. da Fonseca® Celina M. H. de Figueiredo

aCOPPE, Universidade Federal do Rio de Janeiro, Caiza Postal 68530, 21945-970
Rio de Janeiro, RJ, Brazil. gfonseca@esc.microlink.com.br

b Instituto de Matemdtica and COPPE, Universidade Federal do Rio de Janeiro,
Caiza Postal 68530, 21945-970 Rio de Janeiro, RJ, Brazil. celina@cos.ufrj.br

Abstract

The most natural kinetic data structure for maintaining the maximum of a col-
lection of continuously changing numbers is the kinetic heap. Basch, Guibas, and
Ramkumar proved that the maximum number of events processed by a kinetic heap
with n numbers changing as linear functions of time is O(nlog?n) and Q(nlogn).
We prove that this number is actually ©(nlogn). In the kinetic heap, a linear num-
ber of events are stored in a priority queue, consequently, it takes O(logn) time to
determine the next event at each iteration. We also present a modified version of
the kinetic heap that processes O(nlogn/loglogn) events, with the same O(logn)
time complexity to determine the next event.

Key words: kinetic data structures, heaps, computational geometry, data
structures

1 Introduction

Basch, Guibas, and Hershberger [1] introduced the concept of kinetic data
structures by presenting two structures for maintaining the maximum of a
collection of continuously changing numbers: the kinetic (binary) heap and
the kinetic tournament. They argued that counting the number of events of
the kinetic heap was surprisingly non-trivial and proved that, if the n stored
numbers change as linear functions of time, then the kinetic tournament only
processes O(nlogn) events. Basch, Guibas, and Ramkumar [2] proved that, if
the n stored numbers change as linear functions of time, then the kinetic heap
only processes O(nlog®n) and Q(nlogn) events in the worst case. In [2,3] it
was asked whether the kinetic heap actually processes O(nlogn) events in the
worst case. We prove that this is the case, by proving a stronger result: In any

Preprint submitted to Elsevier Science 22 June 2002



kinetic heap-ordered tree, the maximum number of events processed is ezxactly
the number of edges in the transitive closure of the tree (we consider the edges
directed from the root to the leaves). As this number of edges is O(n logn) for
a tree of height O(logn), the claimed upper bound follows.

A heap-ordered tree is a rooted tree where the value of the element associ-
ated with each node is greater than the value of the elements associated with
its children. In a kinetic heap-ordered tree, each element is a continuous real
function of time. As usual [1,2], we restrict ourselves to linear functions. As
the values of the functions change, the corresponding elements have to move
to different nodes in the tree so that the rooted tree is kept heap-ordered. A
move occurs when, for any edge (vq,vy) with associated elements f; and fs,
value f(t) becomes equal to value f(t). To keep the rooted tree heap-ordered,
we exchange the elements associated with nodes v; and v, at that moment.
We call the instants of time when we have to update the tree events. To keep
track of the events, we maintain a priority queue containing the edges that
may need to be changed. This priority queue is the event queue of the kinetic
structure.

To make our terminology shorter, we will not distinguish between a node,
the element associated with it and its value, unless absolutely necessary. For
example, we can say “each node is greater than its children” instead of “the
value of the element associated with each node is greater than the value of the
element associated with its children”, or “the descendants of the element f
with slopes greater than the slope of f” instead of “the elements whose slopes
are greater than the slope of the element f, and which are associated with
nodes that are descendants of the node associated with f”.

A kinetic binary heap is a kinetic heap-ordered tree where the tree is a full
binary tree. A kinetic k-heap is a kinetic heap-ordered tree where the tree a is
full k-ary tree.

In a kinetic binary heap with n elements, each event can be processed in
O(logn) time. This is true because we need to keep at most n — 1 events
in the event queue at a time (one for each edge) and a constant number of
events will have to be rescheduled at each event. But how many events will a
kinetic heap process in the worst case? This question remained open since the
introduction of the kinetic heaps [1] and is answered in the next section.

2 Number of Events

Given a kinetic heap-ordered tree K, let ®(K) be the number of edges in
the transitive closure K* of K (consider the edges directed from the root to



the leaves). There are two natural ways to calculate ®(K): the sum of the
out-degree in K* of all nodes, and the sum of the in-degrees in K* of all
nodes. The former is the sum of the number of descendants in K of all nodes,
and the latter is the sum of the levels in K of all nodes (root with level 0).
Throughout the paper, we alternate between these two approaches, choosing
the most convenient one. The former is referenced as top-down and the latter
as bottom-up.

We prove that, for any kinetic heap-ordered tree K, the number of events is
exactly ®(K) in the worst case. The height of a kinetic binary heap K with n
elements is O(logn) and ®(K) = O(nlogn), which imply the claimed upper
bound for the number of events. First we prove ®(K) is a lower bound for the
number of events. The proof is essentially the same as in [2].

Lemma 1 If the n linear functions of time stored in a kinetic heap-ordered
tree K are all tangent to the parabola y = t2, at least ®(K) events will be
processed if we start with a sufficiently small value of t.

PROOF. Each element will be the root of the tree at some time t. At each
event, only one element goes up towards the root by moving exactly one level.
Thus the level of a node gives the number of events needed to take this node
to the root. Using the bottom-up definition of ®(K), it easy to see that ®(K)
events are necessary to take every element of the tree to the root. O

To prove that ®(K) is also an upper bound we define below another function
d'(K), satisfying ®'(K) < ®(K). This function ®'(K) depends not only on
the structure of the tree, but also on the elements of K and the nodes they
are associated with. Because of that, we refer to the kinetic heap-ordered tree
K at time t as K; and deal with ®'(K;) instead of ®'(K). If an event occurs at
time ¢, we refer to the kinetic heap-ordered tree K just before and just after
the nodes are exchanged at time t as K;_ and K., respectively. We shall
prove that ®'(K;) is an upper bound to the number of events processed by a
kinetic heap-ordered tree K after time t.

For every element f of Ky, let ®| (K, f) be the number of descendants of f
that will become greater than f for some ¢’ > t (the ones with a slope greater

than the slope of f). We define

V()= Y (K, D).

feK

For every element f of Ky, for every child c of f in Ky, let & (K, f,c) denote
the number of elements in the sub-tree rooted at ¢ that will become greater



than f for some t' > t. We can compute ®| (K, f) as the following sum:

q)l(Kt?f) - Z (I)l(Ktaf7c)‘
¢ child of f

Lemma 2 The number of events processed in a kinetic heap-ordered tree K
after time t is at most ®'(Ky).

PROOF. We shall prove that, if an event is processed at time ¢, ®'(K;,) <
¢'(K;_) — 1. Since ®'(K;) > 0, for all ¢, that will prove the lemma.

Suppose an event occurred at time ¢ because p(t) = ¢1(t) and p is the parent
of ¢; in K;_. We have that

q)l(KtJmf) = q’/l(Kt—af), for all f # p and f # 1.

Moreover,

q),l(Kt-‘rap) = ¢1(Kt—»p7 Cl) — 1

Let ¢, ¢, ..., cq be the children of p in K;_. Since the slope of ¢; is greater
than the slope of p, we have

q
(I)i(KH’ 1) < q)ll(Kt—, c1) + Zq)/l(Kt—vpa Ci)-
i=2

Adding these equations we have ®'(K;,) < ®'(K,_)—1. O

As @'(K) < ®(K), our result now follows immediately from Lemma 1 and
Lemma 2:

Theorem 3 The maximum number of events processed in a kinetic heap-
ordered tree K is exactly ®(K).

Corollary 4 The mazximum number of events processed in a kinetic binary
heap with n elements is ©(nlogn).

Lemma 2 bounds the total number of events processed in a kinetic heap-
ordered tree, but it does not answer another natural question: How many
times, in the worst case, does the node associated with an element f change?
To answer this question we have to calculate ®'(K') bottom-up.



For every element f of K, let ®(Kj, f) be the number of ancestors of f that
will become less than f for some ¢’ > t (the ones with a slope less than the
slope of f). It is easy to see that ®'(K};) can also be computed as the sum:

(I)/(Kt) = Z @'T(Kt,f).

feEK

Theorem 5 If f is an element of Ky, then f goes one level up towards the
root at most ®4 (K, f) times after time t.

PROOF. We shall prove that, if an event is processed at time ¢, then, for all
elements f, ®} (K, f) < ®(K;, f), and that, if f is the element which goes
up one level towards the root at time ¢, then ®} (K, f) = @ (K, f) — 1.
Since @} (K3, f) > 0, for all £ and f, that will prove the lemma.

Suppose an event occurred at time t because p(t) = ¢(t) and p is the parent
of cin K,_. Let S be the set of elements contained in K. The elements of
S — {p, ¢} can be partitioned into the sets:

S1={f€S—{p,c}: [fisnot adescendant of p in K, }
Se={f €S —{p,c}: fisadescendant of ¢ in K; }
Sy ={f €S —{p,c}: [fisadescendant of p but not of ¢ in K;_}

If f €S5;US,, then the ancestors of f in K;_ and K, are the same. Conse-
quently, for all f € 51 U Sy, we have @) (K, f) = ®}(K;—, f). If f € S3, then
the ancestors of f changed from K; to K;, by the removal of p and addition
of c. As the slope of ¢ is greater than the slope of p, we have ®} (K, f) <
QLK f), for all f € Ss. It is immediate that &} (K4, p) = @} (K, p) and
DL (Kiy,c) = PH(Ki—,c)—1. O

3 Improvements

In Section 1, we said that the number of events stored at the same time in
the event queue of a kinetic heap with n elements is at most n — 1, which
is the number of edges in the tree. We can speed up a kinetic heap with a
simple modification. If ¢y, ¢co,..., ¢, are children of p in a kinetic heap, we
only schedule an event (p,c;) for the child ¢; that will first become greater
than p. It is clear that scheduling events for the other children of p is a waste
of time, because those events will be rescheduled when we process the event
for the edge (p, ¢;).



This modification does not change the asymptotic time complexity of a kinetic
binary heap, but allows us to build an efficient kinetic log n-heap. We analyze
a generic kinetic f(n)-heap. In a generic kinetic f(n)-heap, let Vi, denote
the maximum number of events processed and T,y denote the time required
to process each event. By Theorem 3, a kinetic f(n)-heap processes Vi, =
O(nlogs,,yn) = O(nlogn/log f(n)) events, in the worst case. The time to
process an event, using the strategy described in the previous paragraph, is
Tty = O(f(n) +log(n/f(n))) = ©(f(n) +1logn), where ©(f(n)) is the time
spent examining all the children of the affected nodes and log(n/f(n)) is the
time spent accessing a priority queue with n/f(n) events.

In a kinetic binary heap, f(n) = 2 is constant. As we use faster growing
functions for f(n), the number of events processed decreases together with
the height of the tree, but the time to process each event increases. Normally,
we desire to minimize V)T’ (,), which is the time complexity of processing all
the events in the worst case. This minimum is attained with f(n) = ©(logn),
for which ViegnTiogn = O(nlog®n/loglogn).

4 Conclusion and Open Problems

If the elements are linear functions of time, the number of events processed
in the worst case by a kinetic binary heap and other heap-ordered trees is
completely determined. This analysis improves the one given in [2] by a factor
of logn and is tight. Actually, our analysis is still valid if the set of elements
is a set of pseudo-lines. A set of continuous real functions {fi, fa,..., fu} is a
set of pseudo-lines if, for each pair i # j, fi(t) = f;(t) for at most one value
of t =t;;, and either f;(t) < f;(t) when ¢t < t;; and fi(t) > f;(t) when ¢t > t;;
or f;j(t) < fi(t) when t < t;; and f;(¢t) > fi(t) when t > ¢;;.

We did not mention some natural operations in a kinetic heap: the insertion of
an element, the deletion of an element, and the change of the flight plan of an
element. When changing the flight plan, we replace, at time ¢, an element f;
by another element f; such that fi(t) = fo(t). The number of events processed
by a kinetic heap under these operations is largely unknown. If we start with
an empty heap and make n insertions and n deletions, the number of events
is O(ny/nlogn) [2]. We believe this bound is not tight, and the only lower
bound known is Q(nlogn).

Another intriguing question is the number of events processed by a kinetic
heap where the elements are non-linear functions of time. No result is known.

Although the improvement we suggest in Section 3 results in a reasonable
speed-up in practice, the asymptotic improvement is small. A kinetic log n-



Distribution (i) (Square) Distribution (ii) (Parabolic)

18 160

16 | Kinetic Binary Heap ‘ - Kinetic Binary Heap ‘ -
Kinetic log(n)-Heap ~ ------- 140 rKinetic log(n)-Heap =~ -------

g 1 B 120
g g 100
3 10 é g0
c 8 £
E o4 F 40

2 20

0 e 0 L=

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Thousands of Lines Thousands of Lines

Fig. 1. Times to compute the upper envelope of sets of lines on a 1GHz Athlon

heap can be used to compute the upper envelope of a set of lines (or its
geometric dual, the convex hull) in time ©(nlog®n/loglogn). This is an im-
provement to the algorithm to compute the upper envelope described in [2]
and the heaphull algorithm described in [3], but many well known algorithms
compute the upper envelope/convex hull in optimal O(nlogn) time.

We have implemented a kinetic k-heap and tested it computing the upper
envelope for ¢ > 0 of a set lines y = at + b using the following probability
distributions: (i) @ and b are independent random variables in the interval [0, 1];
(ii) 7 is a random variable in the interval [0, 1], and a = 2r and b = —r?. Case
(ii) is the worst case for the number of events described in Section 2, where
the lines are tangent to the parabola y = t2. For 10° lines, our implementation
of the kinetic log n-heap is faster than the kinetic binary heap by a factor of
approximately 12 in case (i), and 2.3 in case (ii) (see Figure 1). We do not
know any way to probabilistically calculate this discrepancy between the two
average case times.

Acknowledgements

We thank referees for their careful reading and valuable suggestions, which
helped improve the presentation of this paper.

References

[1] J. Basch, L. J. Guibas, J. Hershberg, Data Structures for Mobile Data, in Proc.
8th Annual ACM-SIAM Symposium on Discrete Algorithms, 1997, pages 747-
756; Journal of Algorithms, Vol. 31, No. 1, April 1999, pages 1-28.

[2] J. Basch, L. J. Guibas, and G.D. Ramkumar, Sweeping lines and line segments
with a heap, in Proc. 13th Annual ACM Symposium on Computatinal



Geometry, 1997, pages 469-471.

[3] Andrea Mantler, Jack Snoeyink, Heaphull?, in Proc. 13th Canadian Conference
on Computational Geometry, 2001, pages 129-131.



