Fitting Flats to Points with Outliers

Guilherme D. da Fonseca Unirio
Rio de Janeiro, Brazil

Shape Fitting

- Input: set P of n points in d-dimensional space.
- Place a given shape minimizing the distance between the shape and the farthest point.
- Dimension d is constant.
- Very sensitive to outliers!

Shape Fitting with Outliers

- We are also given a number m of inliers.
- Minimize the m-th smallest distance.
- The remaining $n-m$ points are called outliers.
- We focus on the approximate version, where the distance is ($1+\varepsilon$)-approximated.

Fitting k-Flats

- $k=0$
[Har-Peled and Mazumdar, 2005]
- Smallest ball enclosing m points.
- Linear time approximations.
- $k=1$
- Smallest infinite cylinder enclosing m points.
- 3-SUM hard to approximate in the plane.
- $k=d-1$ [Erickson, Har-Peled, Mount, 2006]
- Smallest slab enclosing m points.
- $\Omega\left((n-m)^{d-1}+(n / m)^{d}\right)$ and $\tilde{O}\left(n^{d} / m\right)$ bounds.

k-Flats for Arbitrary k

- Lower bound easily generalizes to

$$
\Omega\left((n-m)^{k}+(n / m)^{k+1}\right) .
$$

- There is a coreset with $O\left((n-m) / \varepsilon^{(d-1) / 2}\right)$ points. [Agarwal, Har-Peled, and Yu, 2008]
- Useful when there are few outliers.
- Our focus: m is a constant fraction of n.
- Lower bound becomes $\Omega\left(n^{k}\right)$.
- Our Monte-Carlo upper bound is $\mathrm{O}\left(n^{k+1}\right)$.
- For some data sets, the upper bound is $\mathrm{O}(n)$.

Finding an Inlier

 m inliers

- More accurately: finding a set that contains an inlier.
- There are m inliers out of n data points.
- Monte Carlo: Random sample of n / m points contains an inlier with constant probability.
- Deterministic: Use all n points.

Base case: $k=0$

- We want to approximate the smallest ball enclosing m points given an inlier p.
- 2-approximation: select the m-th smallest distance to p.
- Takes O(n) time.
- (1+ع)-approximation: use a grid around p.
- Takes $O\left(n+m / \varepsilon^{d}\right)$ time, but improvements are possible.

Reducing the Dimension

- Find a vector v approximately parallel to the optimal flat.
- Project the points onto a hyperplane perpendicular to v.
- Solve the problem recursively in lower dimension.
- We reduce dimensions (d, k) to ($d-1, k-1$).
- Base case: $k=0$.

Approximately Parallel?

- "Find a vector v approximately parallel to the optimal flat."
- c: optimal cost.
- v^{\prime} : projection of v onto the optimal flat.
- h : directional width of the inliers in direction v '.
- θ : angle between v and v^{\prime}.
- (1+ ε)-approximation if

$$
\theta \leq \varepsilon c / h .
$$

Finding Such Vector v

- Lemma: For every inlier p there is an inlier q such that $v=q-p$ has

$$
\theta \leq 4 c / h .
$$

- To reduce the constant, use a grid of vectors near v.
- Given p, we can find a set of $O\left(n / \varepsilon^{d-k}\right)$ vectors that contains a vector v with $\theta \leq \varepsilon c / h$.
- Project and recurse for each vector in the set.

Running Time

- After finding an inlier, we take time

$$
t_{k, d}= \begin{cases}O\left(n / \varepsilon^{d-k}\right) t_{k-1, d-1} & \text { if } k>0 \\ O\left(n+m / \varepsilon^{d}\right) & \text { if } k=0\end{cases}
$$

- Which solves to

$$
t_{k, d}=O\left(\frac{n^{k+1}}{\varepsilon^{k(d-k)}}+\frac{n^{k} m}{\varepsilon^{(k+1)(d-k)}}\right)=O_{\varepsilon}\left(n^{k+1}\right)
$$

- The total time is $n t_{k, d} / m=\mathrm{O}_{\varepsilon}\left(n^{k+2} / m\right)$ Monte Carlo and $n t_{k, d}=\mathrm{O}_{\varepsilon}\left(n^{k+2}\right)$ deterministic.

Outer-Dense

- A halfspace with normal vector u is deep if it contains $1 / 4$ of the width in direction u.
- A set of points is outer-dense if every deep halfspace contains a constant fraction of the points.
- Points uniformly distributed in a convex region or on its boundary are outer-dense w.h.p.

Outer-Dense Inliers

- Lemma: If the set of inliers is
 outer-dense, then with constant probability a pair of inliers p, q defines a vector $v=q-p$ such that

$$
\theta \leq 4 c / h .
$$

- We get a Monte Carlo algorithm with $\mathrm{O}_{\varepsilon}\left(n^{k+2} / m^{k+1}\right)$ running time for outer-dense sets of inliers.
- Linear for $m=\Omega(n)$.

Summary

- The running time of our Monte Carlo algorithm is

$$
O\left(\frac{n^{k+2}}{m \varepsilon^{k(d-k)}}+\frac{n^{k+1}}{\varepsilon^{(k+1)(d-k)}}\right)=O_{\varepsilon}\left(\frac{n^{k+2}}{m}\right)
$$

which is close to the lower bound of

$$
\Omega\left((n-m)^{k}+(n / m)^{k+1}\right)
$$

for a constant approximation, especially when $m=n / 2$.

- When the set of inliers is outer-dense, the upper bound becomes $\mathrm{O}_{\varepsilon}\left(n^{k+2} / m^{k+1}\right)$.

Open Problems

- Even when $m=n / 2$, there is a $\Theta(n)$ gap between the lower bound and our upper bound (except for $k=0$).
- A related problem consists of approximating the unit cylinder centered on the origin that contains the most points.
- Easy in the plane.
- Is it 3-sum hard in higher dimensions? Near-linear algorithms at least in 3d?

Thank you!

Questions???

