Fitting Flats to Points with Outliers

EuroCG 2010 Dortmund, Germany March 22 – 24, 2010

Shape Fitting

- Input: set *P* of *n* points in *d*-dimensional space.
- Place a given shape minimizing the distance between the shape and the farthest point.
- Dimension *d* is constant.
- Very sensitive to outliers!

Shape Fitting with Outliers

- We are also given a number *m* of inliers.
- Minimize the *m*-th smallest distance.
- The remaining n m points are called outliers.
- We focus on the approximate version, where the distance is (1+ε)-approximated.

Fitting k-Flats

- k = 0 [Har-Peled and Mazumdar, 2005]
 - Smallest ball enclosing *m* points.
 - Linear time approximations.
- *k* = 1
 - Smallest infinite cylinder enclosing *m* points.
 - 3-SUM hard to approximate in the plane.
- k = d 1 [Erickson, Har-Peled, Mount, 2006]
 - Smallest slab enclosing *m* points.
 - $\Omega((n-m)^{d-1} + (n / m)^d)$ and $\tilde{O}(n^d / m)$ bounds.

k-Flats for Arbitrary k

- Lower bound easily generalizes to $\Omega((n-m)^k + (n / m)^{k+1}).$
- There is a coreset with O($(n m) / \epsilon^{(d-1)/2}$) points. [Agarwal, Har-Peled, and Yu, 2008]
 - Useful when there are few outliers.
- Our focus: *m* is a constant fraction of *n*.
 - Lower bound becomes $\Omega(n^k)$.
 - Our Monte-Carlo upper bound is $O(n^{k+1})$.
 - For some data sets, the upper bound is O(n).

Finding an Inlier

m inliers

- More accurately: finding a set that contains an inlier.
- There are *m* inliers out of *n* data points.
- Monte Carlo: Random sample of *n | m* points contains an inlier with constant probability.
- Deterministic: Use all *n* points.

Base case: k = 0

- We want to approximate the smallest ball enclosing *m* points given an inlier *p*.
- 2-approximation: select the *m*-th smallest distance to *p*.
- Takes O(*n*) time.
- (1+ε)-approximation: use a grid around p.
- Takes $O(n + m / \epsilon^d)$ time, but improvements are possible.

Reducing the Dimension

- Find a vector *v* approximately parallel to the optimal flat.
- Project the points onto a hyperplane perpendicular to *v*.
- Solve the problem recursively in lower dimension.
- We reduce dimensions (*d*,*k*) to (*d*-1, *k*-1).
- Base case: *k* = 0.

Approximately Parallel?

- "Find a vector *v* approximately parallel to the optimal flat."
- c: optimal cost.
- *v*': projection of *v* onto the optimal flat.
- *h*: directional width of the inliers in direction *v*'.
- θ : angle between *v* and *v*'.
- (1+ε)-approximation if

 $\theta \leq \varepsilon c / h$.

Finding Such Vector v

Lemma: For every inlier *p* there is an inlier *q* such that
v = *q* - *p* has

 $\theta \leq 4 c / h$.

- To reduce the constant, use a grid of vectors near *v*.
- Given p, we can find a set of $O(n \mid \varepsilon^{d-k})$ vectors that contains a vector v with $\theta \le \varepsilon c/h$.
- Project and recurse for each vector in the set.

Running Time

• After finding an inlier, we take time

$$t_{k,d} = \begin{cases} O(n/\varepsilon^{d-k})t_{k-1,d-1} & \text{if } k > 0\\ O(n+m/\varepsilon^d) & \text{if } k = 0. \end{cases}$$

• Which solves to

$$t_{k,d} = O\left(\frac{n^{k+1}}{\varepsilon^{k(d-k)}} + \frac{n^k m}{\varepsilon^{(k+1)(d-k)}}\right) = O_{\varepsilon}(n^{k+1})$$

• The total time is $n t_{k,d} / m = O_{\epsilon}(n^{k+2} / m)$ Monte Carlo and $n t_{k,d} = O_{\epsilon}(n^{k+2})$ deterministic.

Outer-Dense

- A halfspace with normal vector u is deep if it contains 1/4 of the width in direction u.
- A set of points is *outer-dense* if every deep halfspace contains a constant fraction of the points.
- Points uniformly distributed in a convex region or on its boundary are outer-dense w.h.p.

Outer-Dense Inliers

Lemma: If the set of inliers is outer-dense, then with constant probability a pair of inliers *p*,*q* defines a vector *v* = *q* - *p* such that

 $\theta \leq 4 c / h$.

- We get a Monte Carlo algorithm with $O_{\epsilon}(n^{k+2} / m^{k+1})$ running time for outer-dense sets of inliers.
- Linear for $m = \Omega(n)$.

Summary

• The running time of our Monte Carlo algorithm is

$$O\left(\frac{n^{k+2}}{m\varepsilon^{k(d-k)}} + \frac{n^{k+1}}{\varepsilon^{(k+1)(d-k)}}\right) = O_{\varepsilon}\left(\frac{n^{k+2}}{m}\right)$$

which is close to the lower bound of

$$\Omega((n-m)^k + (n/m)^{k+1})$$

for a constant approximation, especially when m=n/2.

 When the set of inliers is outer-dense, the upper bound becomes O_ε(n^{k+2} / m^{k+1}).

Open Problems

- Even when m = n / 2, there is a $\Theta(n)$ gap between the lower bound and our upper bound (except for k=0).
- A related problem consists of approximating the unit cylinder centered on the origin that contains the most points.
 - Easy in the plane.
 - Is it 3-sum hard in higher dimensions? Near-linear algorithms at least in 3d?

Thank you!

Questions???