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Fitting Flats to Points with Outliers
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Abstract

Determining the best shape to fit a set of points is a
fundamental problem in many areas of computer sci-
ence. We present an algorithm to approximate the
k-flat that best fits a set of n points with n − m
outliers. This problem generalizes the smallest m-
enclosing ball, infinite cylinder, and slab. Our algo-
rithm gives an arbitrary constant factor approxima-
tion in O(nk+2/m) time, regardless of the dimension
of the point set. For many practical sets of inliers, the
running time is reduced to O(nk+2/mk+1), which is
linear when m = Ω(n).

1 Introduction

Determining the best shape to fit a set of points is a
fundamental problem in statistics, machine learning,
data mining, computer vision, clustering, and pattern
recognition. The case of fitting a lower-dimensional
space deserves special attention since it can be used
to minimize the effects of the curse of dimension-
ality. A widely used measure of how well a shape
S fits a set P of n points in d-dimensional space
is maxp∈P mins∈S ‖ps‖, the maximum Euclidean dis-
tance between any point p ∈ P and the shape S.
Unfortunately, this measure is very sensitive to the
presence of outliers.

A more robust measure in the presence of n−m out-
liers and m inliers consists of minimizing the following
cost function: given a parameter m ≤ n, the cost is
the m-th smallest distance between a point in P and
the shape S. In this paper, we consider an approxi-
mation to the case when S is a k-dimensional flat, for
a given value of k ∈ {0, . . . , d − 1}. We show that,
for an arbitrary ε > 0, we can find in Oε(nk+2/m)
time1, with constant probability, a k-dimensional flat
S with cost at most 1 + ε times the optimum. We re-
fer to this problem as flat fitting. We assume that the
dimensions k, d are constants, but 1/ε is an asymp-
totic quantity. It is noteworthy that the complexity
depends only on the target dimension k, regardless
of the dimension of the point set. Our algorithm is
Monte Carlo, but can be made deterministic at the
expense of an O(m) factor in the running time.
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1We use the Oε(·) notation to hide polynomial ε-
dependencies.

In the most interesting case when m is a constant
fraction of n, the running time of our Monte Carlo
algorithm is Oε(nk+1). While the running time is
close to the Ω(nk) lower bound, the algorithm is still
super-linear for k ≥ 1. We show that when the set
of inliers satisfies some density criterion, the running
time is reduced to O(nk+2/mk+1), which is linear for
m = Ω(n). This way, we show that despite the high
worst-case complexity of the problem, there is a fea-
sible solution for some practical large data sets.

Related work. The case of k = 0 corresponds to
the well-studied problem of approximating the small-
est ball enclosing m points. The problem can be
solved in O(n/εd−1) expected time by using tech-
niques from [2, 5, 9]. An easier variation of this prob-
lem, when an inlier is known, is used as a base case
for our algorithm.

The case of k = d − 1 corresponds to approximat-
ing the narrowest slab enclosing m points. In con-
trast to the linear complexity of the k = 0 case, the
most efficient solution for k = d − 1 is a high prob-
ability Monte Carlo algorithm [6] with running time
O(nd(logO(1) 1

ε )/mε). Major improvements are un-
likely, since there is a lower bound of Ω((n−m)d−1 +
(n/m)d) for obtaining a constant approximation [6].

The case of k = 1 corresponds to approximating the
smallest infinite cylinder enclosing m points, which is
stated as an open problem by Har-Peled and Mazum-
dar [9]. A linear time solution for arbitrary values
of m is unlikely, since even the planar approximation
problem is 3SUM-hard [8]. To see that, note that it
is 3SUM-hard to decide if there are three points on
a line and that there is a planar cylinder of radius 0
enclosing three points if and only if there are three
points on a line.

When the number n − m of outliers is small com-
pared to n, we can use the coreset framework to re-
duce the number of points to O((n−m)/ε(d−1)/2) and
then solve the problem in the reduced point set [1].
The case when d is an asymptotic variable is con-
sidered in [10], where an algorithm linear in d but
exponential in 1/ε is presented. Approaches based
on random sampling such as RANSAC [7] are widely
used in practice, but do not guarantee approximation
with respect to the optimum.

The non-robust version of the problem (when m =
n) is generally solved using coresets [4]. The case
when d is an asymptotic variable is considered in [11].
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When k = 0, it is well known that the non-robust
exact version can be solved in O(n) time. Exact so-
lutions for other values of k are considerably less effi-
cient, even in the non-robust version. Chan [3] men-
tions an O(ndd/2e) algorithm for k = d − 1 and an
O(n2d−1+δ) algorithm for k = 1, where δ is an arbi-
trarily small constant.

The exact robust version seems even harder. A triv-
ial solution takes O(n(d−k)(k+1)+2) time, by counting
the number of points for each potential set of up to
(d−k)(k+1)+1 farthest inliers. When k = d−1, the
problem can be solved in O(nd) expected time [6],
improving the trivial solution by two O(n) factors,
one by efficiently counting the number of points using
arrangements, and one by using Chan’s randomized
optimization [2].

A lower bound of Ω((n − m)d−1 + (n/m)d) for ob-
taining a constant approximation when k = d − 1
in presented in [6]. The lower bound is based on a
conjecture for the complexity of the affine degeneracy
problem. We can linearly reduce the flat fitting prob-
lem with k = d−1 to the flat fitting problem in higher
dimension d′ ≥ d and the same value of k. Therefore,
the lower bound for k = d − 1 implies a lower bound
of Ω((n − m)k + (n/m)k+1) for arbitrary k. In the
most interesting case when m is a constant fraction of
n, the lower bound is Ω(nk) and we present an upper
bound of O(nk+1).

Next, we present approximate algorithms for the
flat fitting problem. We present a Monte Carlo al-
gorithm with running time Oε(nk+2/m) and a deter-
ministic algorithm with running time Oε(nk+2). In
Section 3, we show how to reduce the running time
of the Monte Carlo algorithm to Oε(nk+2/mk+1) for
some typical sets of inliers. Concluding remarks and
open problems are discussed in Section 4.

2 Approximate Algorithm

The general idea of the algorithm consists of finding
a vector v that is approximately parallel to the best
fitting flat and then projecting the points onto a hy-
perplane perpendicular to v and recursively solving
a lower dimensional problem. We use k = 0 as a
base case. Actually, the algorithm computes a some-
what small set of vectors that contains v and recurses
for each vector in the set, returning the best solution
found. We start by providing some definitions.

Let Sk,d(P ) and ck,d(P ) respectively denote the
optimal k-dimensional flat for point set P in d-
dimensional space and its cost. We refer to the m
points P ′ ⊆ P within distance ck,d(P ) of Sk,d(P ) as
inliers. Given a d-dimensional set of points P and a
vector v, let P|v denote a (d − 1)-dimensional point
set obtained by projecting P onto a hyperplane per-
pendicular to v. Given a vector v let v′ be the unit
length projection of v onto the optimal flat Sk,d(P ),

ck,d(P )

v
θv

Sk,d(P )

v′

hv′(P
′)

ck−1,d−1(P|v)

Figure 1: Definitions used to state Lemma 1. The
m = 10 inliers are represented by solid circles.

hv′(P ′) = maxp∈P ′ v′ · p − minp∈P ′ v′ · p be the direc-
tional width in direction v′ of the inliers, and θv be
the acute angle between v and v′. See Figure 1 for
a diagram of the previous definitions. The following
lemma follows from simple trigonometric arguments
and shows how to use the solution of a lower dimen-
sional problem in order to approximate the original
problem.

Lemma 1 For any vector v we have

ck,d(P ) ≤ ck−1,d−1(P|v) ≤ ck,d(P ) + hv′(P ′)θv.

By Lemma 1, it is possible to obtain a (1 + ε)-
approximation by finding a vector v with angle

θv ≤ ε ck,d(P )
d hv′(P ′)

= φ

and recursively solving the lower dimensional prob-
lem. Our algorithm considers a set of vectors that
contains a vector u with θu < φ, returning the solu-
tion of minimum cost found. The following lemma is
the key to obtain such set.

Lemma 2 For every inlier p ∈ P ′, there is an inlier
q ∈ P ′ such that the vector v = q − p has

θv ≤ 4ck,d(P )
hv′(P ′)

and

hv′(P ′)
2

≤ ‖v‖ ≤ 2ck,d(P ) + hv′(P ′).

Proof. (sketch) Consider the inlier q ∈ P ′ that re-
alizes the maximum directional distance maxq∈P ′ |v′ ·
p − v′ · q| and use simple geometric arguments (see
Figure 2). �

Say we have a vector v satisfying the properties
of Lemma 2. If ck,d(P ) ≥ hv′(P ′), then we obtain
a set of size O(1/εd−k) containing a vector u with
θu ≤ φ in the following manner. The intersection
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Figure 2: Proof of Lemma 2.

of a (d − k + 1)-flat F in general position and the
optimal flat Sk,d(P ) is a line `. Using a standard grid
of directions, we create a set of O(1/εd−k) vectors in
F that contain a vector u within angle at most ε/d
of `, and consequently has θu ≤ φ. Next, we focus on
the more interesting case when ck,d(P ) < hv′(P ′).

By Lemma 2, we have that ‖v‖ is a constant factor
approximation of hv′(P ′). By Lemma 1, we can re-
cursively solve the (d − 1)-dimensional problem with
point set P|v in order to obtain a constant factor ap-
proximation to ck,d(P ). Putting both approximations
together, we obtain a constant factor upper bound to
θv. We use the approximation of θv to obtain a set
of size O(1/εd−k) containing a vector u with θu ≤ φ.
The set is defined by a grid of directions in a (d−k+1)-
flat as before, but noting that the angle between v and
u is upper bounded by the approximation of θv.

Now, assume we know an inlier p ∈ P ′. By
Lemma 2, the set V = {p − q : q ∈ P} of size O(n)
contains a vector satisfying the condition of Lemma 2.
Therefore, we can obtain a set U of size O(n/εd−k)
that contains a vector u with θu ≤ φ.

For each vector u ∈ U , we project the points onto
a hyperplane perpendicular to u and recursively solve
the lower dimensional problem. Next, we discuss how
to solve the base case k = 0, given an inlier p. The
base case consists of approximating the smallest ball
enclosing m points, including the inlier p.

Using techniques from [5, 9], the base case problem
can be solved in time O(n+m(log 1

ε )/εd−1). If we use
Chan’s randomized optimization [2], we obtain a Las
Vegas algorithm with expected time O(n + m/εd−1).
Actually, there is a very practical and straightfor-
ward solution with running time O(n + m/εd), which
we present next for completeness. (i) Obtain a 2-
approximation a of the radius by finding the m-th
farthest point from p. (ii) Create a set Q containing
the Θ(m) points within distance 2a of p. (iii) Con-
sider a grid with cells of diameter εa. Compute the
radius of the ball enclosing m points from Q centered
at each of the O(1/εd) grid vertices within distance a
from p, returning the smallest radius found.

Plugging the previous results together, the ex-
pected running time tk,d of the flat fitting algorithm,
given an inlier is

tk,d =

{
O(n/εd−k)tk−1,d−1 if k > 0
O(n + m/εd−1) if k = 0.

Consequently,

tk,d = O

(
nk+1

εk(d−k)
+

nkm

ε(k+1)(d−k)−1

)
.

To get rid of the requirement of knowing an inlier,
we apply the following random sampling technique
used in [9]. Note that the set P contains m inliers.
Therefore, a random element of P is an inlier with
probability m/n and a random sample of n/m ele-
ments of P contains an inlier with probability at least
1−1/e. Also, the set P of O(n) elements is guaranteed
to contain an inlier.

Theorem 3 There is a Monte Carlo algorithm to
compute, with constant probability, a (1 + ε)-
approximation of the k-flat that best fits m out of
n points in d-dimensional space in time Oε(nk+2/m)
and, showing ε-dependencies,

O

(
nk+2

mεk(d−k)
+

nk+1

ε(k+1)(d−k)−1

)
.

There is also also a deterministic algorithm with
running time Oε(nk+2) and

O

(
nk+2

εk(d−k)
+

nk+1m log(1/ε)
ε(k+1)(d−k)−1

)
.

3 Outer-dense Inliers

In this section, we show that for many data sets a
random pair of inliers define a vector v satisfying
the properties of Lemma 2 with constant probabil-
ity. Consequently, we obtain a Monte Carlo algorithm
with running time Oε(nk+2/mk+1), which is linear for
m = Ω(n).

We say that a halfspace H with normal vector v′

is deep if hv′(P ′ ∩ H) ≥ hv′(P ′)/4. For a constant
α ≤ 1/2, we say that the set P ′ is α-outer-dense if
any deep halfspace H has |P ′ ∩ H| ≥ α|P ′|. The set
P ′ is outer-dense if there is a constant α such that P ′

is α-outer-dense. The following lemma is analogous
to Lemma 2 when the set P ′ is α-outer-dense.

Lemma 4 If the inliers P ′ are α-outer-dense, then
the vector v = q − p defined by two random elements
p, q ∈ P ′ has

θv ≤ 4ck,d(P )
hv′(P ′)

and

hv′(P ′)
2

≤ ‖v‖ ≤ 2ck,d(P ) + hv′(P ′)

with probability at least 2α2.
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Figure 3: Proof of Lemma 4.

Proof. (sketch) Consider two disjoint deep halfs-
paces H1,H2 with normal vector v′ such that v′ is
parallel to the optimal flat Sk,d(P ) and hv′(P ′∩H1) =
hv′(P ′ ∩ H2) = hv′(P ′)/4 (see Figure 3). Since P ′ is
outer-dense |P ′ ∩ H1|, |P ′ ∩ H2| ≥ α|P ′|. Therefore,
the probability that two random elements p, q ∈ P ′

are one in H1 and the other in H2 is at least 2α2.
The lemma follows from the same trigonometric ar-
guments as Lemma 2. �

Note that if a set of points is α-outer-dense, then
the projection of the set onto a (d − 1)-dimensional
hyperplane is α-outer-dense in dimension d−1. There-
fore, we obtain a Monte Carlo algorithm by sampling
n/mα2 pairs of points at each step, and then solving
the lower dimensional problems.

Theorem 5 When the set of inliers is outer-dense,
there is a Monte Carlo algorithm to compute, with
constant probability, a (1 + ε)-approximation of
the k-flat that best fits m out of n points in d-
dimensional space in time Oε(nk+2/mk+1) and, show-
ing ε-dependencies,

O

(
nk+2

mk+1εk(d−k)
+

nk+1

mk+1ε(k+1)(d−k)−1

)
.

4 Conclusions and Open Problems

We address a generalization to several natural prob-
lems such as the smallest m-enclosing ball (k = 0),
infinite cylinder (k = 1), and slab (k = d−1). Except
for the two extreme cases, we present the first solu-
tion for the flat fitting problem. When m is a constant
fraction of n, the gap between the lower bound and
our Monte Carlo upper bound is only Θ(n).

We show that if the set of inliers is outer-dense, then
the problem becomes exceedingly easier, with a linear
time solution. Many practical sets of inliers are outer-
dense. For example, point sets uniformly distributed
in a convex region and on the boundary of a convex
region are outer-dense with high probability.

A related decision problem which may be useful to
reduce the running time of our Monte Carlo algorithm

for general point sets by an Oε(n) factor is the fol-
lowing. Given a set P of n points in d-dimensional
space and an integer m ≤ n, determine if there is
a line ` that passes through the origin and is within
distance 1 from m points of P . The algorithm may
give an approximate answer in the sense that points
within distance between 1 and 1 + ε may be counted
either way. Except for the planar case, we know of no
near linear solution, nor do we know if the problem is
3SUM-hard.
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