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Abstract

Given a graph G that admits a perfect matching, we investigate the pa-
rameter η(G) (originally motivated by computer graphics applications) which
is defined as follows. Among all nonnegative edge weight assignments, η(G)
is the minimum ratio between (i) the maximum weight of a perfect matching
and (ii) the maximum weight of a general matching. In this paper, we de-
termine the exact value of η for all rectangular grids, all bipartite cylindrical
grids, and all bipartite toroidal grids. We introduce several new techniques to
this endeavor.

1 Introduction

All graphs in this paper are finite, undirected and connected. We refer to the
textbook of Diestel [2] for any undefined graph terminology. Let G = (V,E) be a
graph. For a vertex v ∈ V , we define its neighborhood as N(v) = {u : uv ∈ E} and
the vertices in N(v) are called the neighbors of v. The degree d(v) of a vertex v ∈ V is
defined as d(v) = |N(v)|. The minimum degree of G is denoted by δ(G). The average
degree of G is defined as follows: d̄(G) = 1

n

∑n
i=1 d(vi), where V = {v1, . . . , v|V |}. As

usual Kn, n ≥ 1, (resp. Kn,m, n,m ≥ 1) denotes the complete graph (resp. complete
bipartite graph) on n vertices (resp. with n vertices in one partition and m in the
other partition). Finally, Cn, n ≥ 3, denotes the induced cycle on n vertices.

A matching in G is a set M ⊆ E such that no two edges in M share a common
vertex. Given a matching M in a graph G, we say that M saturates a vertex v
and that vertex v is M-saturated, if some edge of M is incident to v. A matching
M is perfect if |M | = |V |

2
, i.e, all vertices in G are M -saturated. A matching M is

maximal if there exists no other matching M ′ such that M ⊆ M ′ and |M ′| > |M |.
A matching M is maximum if it has maximum cardinality.

Let w : E → R+ be a weight function on the edges of G. We will refer to w as
an edge weighting of G. Given a subset E ′ ⊆ E, the quantity w(E ′) =

∑
e∈E′ w(e)
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is called the weight of E ′. A maximum weight matching in G, denoted by M∗(G),
is a matching of maximum total weight in G. A maximum weight perfect matching
in G, denoted by P ∗(G), is a perfect matching of maximum total weight (among
all perfect matchings in G). Given a graph G = (V,E) which admits a perfect
matching, the parameter η(G) is defined as

η(G) = min
w:E→R+

w(P ∗(G))

w(M∗(G))

The study of the parameter η was initiated in [7] and motivated by applications
in computer graphics (see [4, 5]) where one seeks to convert a triangle mesh into a
quadrangulation. Each triangle is represented by a vertex, two vertices are linked
by an edge if the corresponding triangles are adjacent, and edge weights correspond
to how “compatible” two triangles are (the definition of compatibility is largely
dependent on the specific objective). Due to this application, the first study focused
on cubic graphs, i.e. graphs in which all vertices have degree 3. Compared to
triangulations, structured grids define a simpler but also widely used mesh [6]. By
merging two adjacent grid cells, we obtain an unstructured grid with half as many
cells. Thanks to the regular nature of structured grids we can calculate the exact
values of η for each grid size, instead of only upper and lower bounds as in the case
of cubic graphs.

Since the parameter η can be defined for any graph which admits a perfect
matching, its study is of interest from a theoretical point of view. Furthermore, the
value of the parameter η tells us how far or close the maximum weight of a perfect
matching is from the maximum weight of a general matching in a given graph,
considering any nonnegative edge weighting. Thus, it is natural to consider several
different graph classes. Notice that the problem of deciding whether η(G) = c, for a
given graph G and a nonnegative real c, is not known to be in P nor to be NP-hard.

It is easy to see that we necessarily have 0 ≤ η(G) ≤ 1, for any graph G
admitting a perfect matching. In [7], the authors characterize those graphs G for
which η(G) = 0 as well as the graphs G for which η(G) = 1. Furthermore, they
provide lower and upper bounds on η for several types of bridgeless cubic graphs, i.e.
cubic graphs not containing any edge whose deletion disconnects the graph. Finally,
the authors show that if a graph G admits a perfect matching, then the value of
η(G) is well defined.

The main technique available so far to prove a lower bound on η is the following.
Suppose G = (V,E) contains k perfect matchings P1, . . . , Pk such that each edge of
G belongs to at least r of these matchings. Consider a nonnegative edge weighting w
of E. Then rw(M∗(G)) ≤∑k

i=1 w(Pi). Without loss of generality, we may assume
that w(P1) ≥ w(P2) ≥ . . . ≥ w(Pk). Hence, rw(M∗(G)) ≤ kw(P1) ≤ kw(P ∗(G))
which implies that η(G) ≥ r

k
. This proof technique has a major weakness. It cannot

prove lower bounds on η higher than 1 over the average degree d̄(G) of G, since
r
k

is upper bounded by 1
d̄(G)

. Indeed, since the size of a perfect matching is |V |
2

, it

follows from the above that k |V |
2
≥ r|E|, i.e. k|V | ≥ 2|E|r. Now using the fact that

2|E| = ∑|V |
i=1 d(vi), we deduce that k ≥ rd̄(G) and so r

k
≤ 1

d̄(G)
.

In this paper, we introduce new techniques that break this barrier (see Section 2).
These techniques allow us to compute the exact value of η for the following graph
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classes: (i) rectangular grids; (ii) bipartite cylindrical grids; (iii) bipartite toroidal
grids (see Section 3 for the corresponding definitions and theorems). Section 4 is
devoted to concluding remarks and open problems.

2 New techniques to determine lower and upper

bounds

In this section, we introduce new techniques that enable us to obtain upper and
lower bounds on the value of η. We start with a lemma allowing us to determine
upper bounds. It generalises an argument given in [7].

Lemma 1. Let G = (V,E) be a graph with δ(G) ≥ 2. Suppose G contains a perfect
matching and there exists a maximal matching that does not saturate a vertex v of
degree δ(G). Then, η(G) ≤ δ−1

δ
.

Proof. Consider a vertex v of G with d(v) = δ(G) and let M be a maximal matching
not saturating v. Let u1, u2, · · · , uδ(G) be the neighbors of v. Since M is maximal, all
neighbors of v are necessarily M -saturated. Let uiwi, i = 1, . . . , δ(G), be the edges of
M saturating the neighbors of v. Notice that the neighbors of v may be adjacent, and
that the edges of M saturating the neighbors of v are not necessarily distinct. Now
any perfect matching P contains at most δ(G) − 1 edges in {uiwi, i = 1, . . . , δ(G)}
since P saturates v. Define a nonnegative edge weighting w such that w(uiwi) = 1
for i = 1, . . . , δ(G), and w(e) = 0 otherwise. It follows that w(P ) ≤ δ(G) − 1 and

w(M) = δ(G). Hence, η(G) ≤ δ(G)−1
δ(G)

.

The next lemma allows us to obtain lower bounds on η.

Lemma 2. Let c, r ≥ 0 be two integers and G = (V,E) be a graph which admits a
perfect matching. Let G1 = (V,E1), G2 = (V,E2), . . . , Gk = (V,Ek) be k spanning
subgraphs of G admitting each a perfect matching and such that η(Gi) ≥ c for
i = 1, . . . , k. If each edge of G is contained in at least r sets among E1, E2, . . . , Ek,
then η(G) ≥ c r

k
.

Proof. First, notice that since G1, . . . , Gk are spanning subgraphs of G, any perfect
matching in Gi, i ∈ {1, . . . , k}, is also a perfect matching in G. Now, let M be a
maximum weight matching of G for some nonnegative edge weighting w. Since each
edge of G is contained in at least r sets among E1, E2, . . . , Ek, we have

k∑
i=1

w(M ∩ Ei) ≥ r w(M) (1)

Assume, without loss of generality, that w(M∩E1) ≥ w(M∩Ei) for i = 2, . . . , k.
Then, inequality (1) implies that

w(M ∩ E1) ≥ r w(M)

k
(2)

Now let P1 be a perfect matching of maximum weight in G1. Since η(G1) ≥ c,
the definition of η implies that
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w(P1)

w(M ∩ E1)
≥ c (3)

Combining inequalities (2) and (3), we obtain

w(P1)

w(M)
≥ c r

k
(4)

Let P be a perfect matching of maximum weight in G. Since w(P1) ≤ w(P )
(recall that a perfect matching in G1 is also a perfect matching in G), we can
rewrite inequality (4) as

w(P )

w(M)
≥ c r

k
(5)

Since inequality (5) holds for any edge weighting w, it follows that η(G) ≥ cr
k

.

Throughout the paper, we will use Lemma 2 repeatedly in order to compute
lower bounds on η for various graph classes, which finally allow us to obtain the
exact value of η. Notice that in order to use Lemma 2, the main challenge consists
in finding the appropriate spanning subgraphs.

The following result, which was proven in [7], will also be an important tool
for us.

Theorem 3 (Brazil et al. [7]). Let G = (V,E) be a graph containing a perfect
matching. Then,

• η(G) = 0 if and only if there is an edge e ∈ E that is not contained in any
perfect matching;

• η(G) = 1 if and only if all connected components of G are isomorphic to K2n

or Kn,n, for n ≥ 1.

From the previous theorem it follows immediately that η(C4) = η(K2) = 1. Also,
a graph G which is the disjoint union of C4’s and K2’s satisfies η(G) = 1.

Even though it is often the case, Lemma 2 may not always provide lower bounds
allowing to obtain the exact value of η. In other words, it may not always provide
tight lower bounds. Surprisingly, it does give tight bounds for all graphs among
the following graph classes: rectangular grids and bipartite cylindrical grids. Nev-
ertheless, for the class of bipartite toroidal grids, there exists a single graph (on 16
vertices) for which Lemma 2 cannot be applied optimally, in the sense that it does
not give us the lower bound needed to compute the exact value of η. For this special
case, we need another technique which we introduce hereafter. This technique is
much more intricate than the previous ones and can be applied not only to bipartite
toroidal grids, but also to arbitrary bipartite graphs. We start with some definitions.

Given two sets S, S ′ the symmetric difference S 	 S ′ is the set of elements that
are in S or in S ′ but not in both. Consider a graph G = (V,E) and a matching
M . An alternating cycle with respect to M is a cycle C of even length such that
exactly half of the edges of C are in M . A matching M ′ is a rotation of M if there
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exists an alternating cycle C with respect to M such that M ′ = M 	 E(C), where
E(C) denotes the set of edges in C. The following lemma follows from the proof of
Berge’s lemma on augmenting paths [1].

Lemma 4. Let G = (V,E) be a graph. Given two matchings M1,Mk in G saturating
the same set of vertices, there is a sequence of k matchings M1, . . . ,Mk, k ≥ 2, such
that Mi+1 is a rotation of Mi for i = 1, . . . , k − 1.

Proof. Consider the graph G′ = (V,M1 	Mk). Clearly, G′ contains only vertices of
degree 0 or 2 and is therefore a collection of cycles and isolated vertices. Since M1 is
a matching, the cycles are alternating with respect to M1. By iteratively applying
rotations on each of the cycles of G′ we obtain Mk from M1.

Let M be a matching in a graph G. An alternating path with respect to M is a
path that alternates between edges in M and edges not in M . An augmenting path
with respect to M is an alternating path with respect to M whose endvertices are
not M -saturated.

Given a matching M that leaves exactly 2c, c ≥ 1, vertices unsaturated, an
augmenting path forest with respect to M is a set of c vertex-disjoint augmenting
paths with respect to M . A set of augmenting path forests is edge-disjoint if each
edge of G is contained in at most one augmenting path forest. We obtain the
following two lemmas.

Lemma 5. Let M be a matching in a graph G = (V,E) and let w be a nonnegative
edge weighting of E. If there exist k edge-disjoint augmenting path forests, then
there exists a perfect matching P with w(P ) ≥ w(M)(k−1)

k
.

Proof. Let F1, . . . , Fk be the edge-disjoint augmenting path forests with respect to
M . Let F ∗ = arg minFi, i=1,...,k(w(M ∩ Fi)). Since the forests are edge-disjoint, we
have that w(M ∩ F ∗) ≤ w(M)/k. It is easy to see that the matching P = F ∗ 	M
is perfect and satisfies w(P ) ≥ w(M)(k−1)

k
.

Lemma 6. Let G = (V,E) be a bipartite graph and M a matching in G that satu-
rates the vertex set V ′ ⊂ V . Suppose that F1, . . . , Fk are k edge-disjoint augmenting
path forests with respect to M . Then, for any matching M ′ saturating V ′ there exists
a set of k edge-disjoint augmenting path forests with respect to M ′.

Proof. It follows from Lemma 4 that we may assume without loss of generality that
M ′ is a rotation of M . Let C be the corresponding alternating cycle with respect
to M . Let S ⊆ V be the set of unsaturated vertices.

Denote by A = (VA, EA) the graph formed by the union of all augmenting paths
with respect to M in F1, . . . , Fk. If EA ∩ E(C) = ∅, then clearly F1, . . . , Fk are
k edge-disjoint augmenting path forests with respect to M ′, and hence the lemma
holds. So we may assume that EA ∩ E(C) 6= ∅.

We denote by A′ = (VA′ , EA′) the graph defined as follows: EA′ = (EA \E(C))∪
(E(C)\EA) and VA′ is the set of vertices incident with at least one edge in EA′ . We
will show that A′ can be decomposed into k edge-disjoint augmenting path forests
with respect to M ′ and hence the lemma holds.

Claim. Let v ∈ VA′. If v ∈ S, dA′(v) = k, otherwise dA′(v) = 2.
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Proof. First notice that for any v ∈ VA we have dA(v) = k if v ∈ S and dA(v) = 2
if v /∈ S. By the definition of A′, we clearly have dA′(v) = dA(v), ∀v ∈ VA′ \ V (C).
Now consider some vertex v ∈ VA′ ∩ V (C). If v ∈ VA, then necessarily v has some
neighbor w /∈ V (C) in A. By definition of A′, w is also a neighbor of v in A′.
Furthermore, v has one neighbor z ∈ V (C) in A such that vz ∈ E(C). Hence, in
A′ vertex v has a neighbor t ∈ V (C), t 6= z, such that vz ∈ E(C) (since vz /∈ EA).
Since v has no other neighbor in A′, it follows that dA′(v) = 2. Finally, suppose
that v /∈ VA. Let w, t be the neighbors of v in C. Since vw, vt /∈ EA, it follows that
vw, vt ∈ EA′ . Again, we conclude that dA′(v) = 2, since v has no other neighbor
in A′.

It follows from the previous claim that A′ can be decomposed into |S|
2
· k edge-

disjoint augmenting paths. Indeed, starting at some unsaturated vertex v ∈ S, we
simply follow the edges of A′ until we reach again an unsaturated vertex w ∈ S.
Since G is bipartite, we necessarily have v 6= w. This gives us a first augmenting path
P1. By repeating the same procedure, we finally obtain |S|

2
·k edge-disjoint augment-

ing paths P1, . . . , P |S|
2
·k. It remains to show that these paths can be partitioned into

k edge-disjoint augmenting path forests. To do this, we construct the following aux-
iliary graph H = (VH , EH): with every vertex s ∈ S, we associate a vertex vs in H;

we add an edge vs1vs2 if there exists i ∈ {1, . . . , |S|
2
·k} such that Pi is an augmenting

path from s1 to s2 in A′. Since dA′(s) = k, ∀s ∈ S, H is a k-regular graph. Fur-
thermore, H is bipartite. Indeed, if H contains an odd cycle vs1 , vs2 , . . . , vs2l+1

, vs1 ,
it follows that in G, the union of the paths P1,2, P2,3, . . . , P2l+1,1, where Pi,j is the
augmenting path from si to sj, forms a cycle of odd length since the length of every
augmenting path is odd. But this contradicts the fact that G is bipartite. Thus,
we conclude that H is a k-regular bipartite graph. Now, it follows from König’s
theorem on edge-coloring bipartite graphs [3], that the edges of H are k-colorable

and each color class contains VH
2

= |S|
2

edges. It is easy to see that the edges of
each color class corresponds to an augmenting path forest in A′. This completes the
proof.

Now by combining Lemmas 5 and 6, we may obtain new lower bounds on η.
Indeed, let G = (V,E) be a bipartite graph admitting a perfect matching and
also containing at least one maximal matching which is not perfect. Let w be a
nonnegative edge weighting of E. Let S1, . . . , Sp be stable sets (a stable set is a set
of pairwise nonadjacent vertices) in G of even cardinality. Suppose that for every
maximal matching M in G which is not perfect, there exists i ∈ {1, . . . , p} such
that the vertices in Si are not M -saturated. Furthermore, suppose that for every
i ∈ {1, . . . , p} there exists a maximal matching M which is not perfect such that the
vertices in Si are notM -saturated and such that there are k edge-disjoint augmenting
path forests with respect to M . It follows from Lemma 6 that for any maximal
matching M in G which is not perfect, there exist k edge-disjoint augmenting path
forests with respect to M . Since in addition for any perfect matching P in G we
have w(P ∗)

w(P )
≥ 1, we conclude from Lemma 5 that η(G) ≥ k−1

k
.
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3 Rectangular, bipartite cylindrical and bipartite

toroidal grids

In this section, we provide exact values of η for all rectangular grids, bipartite
cylindrical grids, and bipartite toroidal grids.

A rectangular grid or simply a grid Gm,n has vertex set V = {(i, j) : i =
1, . . . ,m, j = 1, . . . , n}, and edge set E = {(i, j)(i′, j′) : |i − i′| + |j − j′| =
1, (i, j), (i′, j′) ∈ V }. The value m is called the width of the grid and the value
n the height of the grid. A grid Gm,n admits a perfect matching if and only if
|V | = mn is even, i.e. when the width or the height is even. Since Gm,n is isomor-
phic to Gn,m, we consider only the cases in which n is even. An example of a perfect
matching consists of the edges (i, j)(i, j + 1) for all i and all odd j. Notice that all
rectangular grids are bipartite graphs.

A cylindrical grid Ym,n is a graph containing Gm,n with the additional edges
(m, j)(1, j) for j = 1, . . . , n. Cylindrical grids also admit a perfect matching if and
only if mn is even, but Ym,n is not isomorphic to Yn,m unless m = n. A cylindrical
grid is bipartite if and only if m is even.

A toroidal grid Tm,n is a graph containing Ym,n with the additional edges (i, n)(i, 1)
for i = 1, . . . ,m. Toroidal grids admit a perfect matching if and only if mn is even
and Tm,n is isomorphic to Tn,m. A toroidal grid is bipartite if and only if m and n
are even.

Throughout the text, when we draw a grid graph we represent a vertex (i, j) by
a point with horizontal coordinate i and vertical coordinate j where the vertex (0, 0)
corresponds to the top-left corner.

3.1 Rectangular grids

In this section, we prove several lemmas that together give the following exact values
of η for all rectangular grids.

Theorem 7. Consider the grid Gm,n with m,n ≥ 1 and mn even. Then

η(Gm,n) =



1 if m ≤ 2 and n = 2,
1
2

if m ≥ 3 and n = 2,

0 if m = 1 and n ≥ 4,
1
2
− 1

2m
if m ≥ 3 is odd and n ≥ 4,

1
2

if m,n ≥ 4 are both even,

η(Gn,m) otherwise.

We start by establishing lower bounds on η.

Lemma 8. η(Gm,2) ≥ 1
2

for all m ≥ 3.

Proof. We consider two spanning subgraphs G1 = (V,E1) and G2 = (V,E2) of Gm,2

with edge sets described below and illustrated in Figure 1.

7



E1

E2

E1

E2

(1, 1)

(5, 2)

Figure 1: Spanning subgraphs of G5,2 and G6,2 for Lemma 8.

E1 = {(i, j)(i+ 1, j) : i is odd from 1 to m− 1, j = 1, 2}
∪ {(i, 1)(i, 2) : i = 1, . . . ,m}

E2 = {(i, j)(i+ 1, j) : i is even from 2 to m− 1, j = 1, 2}
∪ {(1, 1)(1, 2)} ∪ {(m, 1)(m, 2) if m is even}

Each of the spanning subgraphs is a disjoint union of C4’s and/or K2’s and
therefore admits a perfect matching. Since η(C4) = η(K2) = 1 (see Theorem 3), it
follows that η(G1) = η(G2) = 1. Furthermore, every edge of Gm,2 is contained in at
least one set among E1, E2. Hence, we deduce from Lemma 2 that η(Gm,2) ≥ 1

2
.

Using similar arguments, we obtain the same lower bound for grids with even
width and height.

Lemma 9. η(Gm,n) ≥ 1
2

for even m,n ≥ 2.

Proof. Consider two spanning subgraphs G1 = (V,E1) and G2 = (V,E2) of Gm,n

with edge sets as described below and illustrated in Figure 2.

E1 E2

Figure 2: Spanning subgraphs of G8,6 for Lemma 9.

E1 = {(i, j)(i+ 1, j) : i is odd from 1 to m− 1, j = 1, . . . , n}
∪ {(i, j)(i, j + 1) : i = 1, . . . ,m, j is even from 2 to n− 2}

E2 = {(i, j)(i+ 1, j) : i is even from 2 to m− 2, j = 1, . . . , n}
∪ {(i, j)(i, j + 1) : i = 1, . . . ,m, j is odd from 1 to n− 1}

Each of the two spanning subgraphs is a disjoint union of C4’s and K2’s and
therefore admits a perfect matching. As before, we deduce that η(G1) = η(G2) = 1.
Furthermore, since every edge of Gm,n is contained in at least one set of E1, E2, it
follows from Lemma 2 that η(Gm,n) ≥ 1

2
.
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When the width is odd, the lower bound depends on the value of m.

Lemma 10. η(Gm,n) ≥ 1
2
− 1

2m
for odd m ≥ 3 and even n ≥ 2.

Proof. Consider m spanning subgraphs Gk = (V,Ek) for k = 1, . . . , (m−1)
2

and G′k =

(V,E ′k) for k = 1, . . . , (m+1)
2

with edge sets as described below and illustrated in
Figure 3.

E1 E2 E3

E ′
1 E ′

2

E ′
3 E ′

4

Figure 3: Spanning subgraphs of G7,4 for Lemma 10.

Ek = {(i, j)(i+ 1, j) : even i with 2 ≤ i ≤ 2k − 2 and j = 1, . . . , n}
∪ {(i, j)(i+ 1, j) : odd i with 2k + 1 ≤ i ≤ m− 2 and j = 1, . . . , n}
∪ {(i, j)(i, j + 1) : i = 1, . . . ,m and odd j with 1 ≤ j ≤ n− 1}

E ′k = {(i, j)(i+ 1, j) : odd i with 1 ≤ i ≤ 2k − 3 and j = 1, . . . , n}
∪ {(i, j)(i+ 1, j) : even i with 2k ≤ i ≤ m− 1 and j = 1, . . . , n}
∪ {(i, j)(i, j + 1) : i = 2k − 1 and odd j with 1 ≤ j ≤ n− 1}
∪ {(i, j)(i, j + 1) : i 6= 2k − 1 and even j with 2 ≤ j ≤ n− 2}

Each of the spanning subgraphs is a disjoint union of C4’s and K2’s and therefore
admits a perfect matching. As before, we obtain that η(Gk) = η(G′k) = 1. Since ev-

ery edge ofGm,n is contained in at least (m−1)
2

sets amongE1, . . . , Em−1
2
, E ′1, . . . , E

′
m+1

2

,

it follows from Lemma 2 that η(Gm,n) ≥ m−1
2m

= 1
2
− 1

2m
.

Let us now consider upper bounds on η.

Lemma 11. η(Gm,n) ≤ 1
2

for m ≥ 3 and even n ≥ 2.

9



Proof. Let M be an arbitrary maximal matching containing the edges (2, 1)(3, 1)
and (1, 2)(2, 2). Then, vertex v = (1, 1), which has degree 2, is not M -saturated. It
follows from Lemma 1 that η(Gm,n) ≤ 1

2
.

The upper bound can be improved for grids of odd width, matching the corre-
sponding lower bound.

Lemma 12. η(Gm,n) ≤ 1
2
− 1

2m
for odd m ≥ 3, even n ≥ 4.

Proof. For i = 1, . . . ,m, let s(i) denote the edge (i, 1)(i, 2) if i is even and (i, 2)(i, 3)
if i is odd. We say that s(i) is even (resp. odd) if i is even (resp. odd). Consider the
matching M = {s(i) : i = 1, . . . ,m} (see Figure 4 for an example) and set w(e) = 1
if e ∈M and w(e) = 0 if e 6∈M . Clearly, M is a maximum weight matching and its
total weight is m.

Figure 4: Matching M in G7,4 for Lemma 12.

Now, let P be a perfect matching in Gm,n. Let i ∈ {1, . . . ,m} be even such that
s(i) ∈ P . If s(i + 2) ∈ P , set i′ = i + 1. Otherwise, let i′ ∈ {1, . . . ,m} be odd and
maximum such that s(i∗) 6∈ P , ∀ even i < i∗ < i′. We claim that there exists odd
i + 1 ≤ j ≤ i′ such that s(j) 6∈ P . Indeed, if j does not exist, then the vertices
(i + 1, 1), (i + 2, 1), . . . , (i′, 1) must be saturated by edges from the path (i + 1, 1)-
(i + 2, 1)-. . .-(i′, 1), which is impossible since this path contains an odd number of
vertices. Hence, for each edge s(i) ∈ P , i even, there exists an edge s(ji) 6∈ P , ji
odd and ji > i and furthermore for s(i1), s(i2) ∈ P , i1 6= i2 even, we have ji1 6= ji2 .

Finally, we claim that there exists odd j ∈ {1, . . . ,m} such that s(j) 6∈ P and
j < i, ∀ even i ∈ {1, . . . ,m} with s(i) ∈ P . Indeed, if j does not exist, then vertices
(1, 1), . . . , (i∗−1, 1), where i∗ = min{i even : s(i) ∈ P} (resp. i∗ = m+1 if s(i) 6∈ P ,
∀ even i ∈ {1, . . . ,m}), must be saturated by edges from the path (1, 1)-. . .-(i∗−1, 1),
which is impossible since this path contains an odd number of vertices.

We conclude that if P contains k even edges from M , then there exists k+1 odd
edges of M not belonging to P . Thus, P contains at most k+ m+1

2
− (k+ 1) = m−1

2

edges of M and has total weight at most m−1
2

. Hence, w(P )
w(M)

≤ (m−1)/2
m

= 1
2
− 1

2m
and

thus the result follows.

Proof of Theorem 7: Let Gm,n be a rectangular grid with mn even. If m = 1,
G1,n is a path which admits a perfect matching. By Theorem 3 we obtain that,

η(G1,n) =

{
1 if n = 2,

0 if n ≥ 4.

Next, consider that case when m = n = 2. G2,2 is isomorphic to C4 and thus
η(G2,2) = 1. If m ≥ 3 and n = 2, it follows from Lemmas 8 and 11 that η(Gm,2) = 1

2
.
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The case when m ≥ 3 is odd and n ≥ 4 immediately follows from Lemmas 10
and 12. When m,n ≥ 4 are both even, then we deduce from Lemmas 9 and 11 that
η(Gm,n) = 1

2
. Since Gm,n is isomorphic to Gn,m, the result follows.

3.2 Bipartite cylindrical grids

In this section, we consider bipartite cylindrical grids. As before, we will prove
several lemmas that together give the following exact values of η for all bipartite
cylindrical grids.

Theorem 13. Let Ym,n be a cylindrical grid with m ≥ 2 even and n ≥ 1. Then

η(Ym,n) =


1 if m = 2 and n ≤ 2,

1 if m = 4 and n = 1,
2
3

if m = 4 and n = 2,
1
2

otherwise.

Let us first consider lower bounds on η, starting by an alternative proof that the
cube graph (Y4,2) satisfies η ≥ 2

3
. The original proof can be found in [7].

Lemma 14. η(Y4,2) ≥ 2
3
.

Proof. We consider three spanning subgraphs G1 = (V,E1), G2 = (V,E2),
G3 = (V,E3) of Y4,2 with edge sets as described below and illustrated in Figure 5.

E1 E2 E3

Figure 5: Spanning subgraphs of Y4,2 for Lemma 14.

E1 = {(1, 1)(2, 1), (3, 1)(4, 1), (1, 2)(2, 2), (3, 2)(4, 2),

(1, 1)(1, 2), (2, 1)(2, 2), (3, 1)(3, 2), (4, 1)(4, 2)}
E2 = {(2, 1)(3, 1), (4, 1)(1, 1), (2, 2)(3, 2), (4, 2)(1, 2),

(1, 1)(1, 2), (2, 1)(2, 2), (3, 1)(3, 2), (4, 1)(4, 2)}
E3 = {(1, 1)(2, 1), (2, 1)(3, 1), (3, 1)(4, 1), (4, 1)(1, 1),

(1, 2)(2, 2), (2, 2)(3, 2), (3, 2)(4, 2), (4, 2)(1, 2)}

Each of the spanning subgraphs is a disjoint union of C4’s and therefore admits a
perfect matching. It follows from Lemma 2 that η(Gi) = 1, for i = 1, 2, 3. Further-
more, every edge of Y4,2 is contained in exactly two sets among E1, E2, E3. Thus,
we deduce from Lemma 2 that η(Y4,2) ≥ 2

3
.

Lemma 15. η(Ym,n) ≥ 1
2

for even m ≥ 2 and n ≥ 1.

Proof. Consider two spanning subgraphs G1 = (V,E1) and G2 = (V,E2) of Ym,n
with edge sets as described below and illustrated in Figure 6. The first coordinate
of the vertices is taken modulo m.

11



E1 E2

Figure 6: Spanning subgraphs of Y8,6 for Lemma 15.

E1 = {(i, j)(i+ 1, j) : i is odd from 1 to m− 1, j = 1, . . . , n}
∪ {(i, j)(i, j + 1) : i = 1, . . . ,m, j is even from 2 to n− 2}

E2 = {(i, j)(i+ 1, j) : i is even from 2 to m, j = 1, . . . , n}
∪ {(i, j)(i, j + 1) : i = 1, . . . ,m, j is odd from 1 to n− 1}

Each of the two spanning subgraphs is a disjoint union of C4’s and/or K2’s and
therefore admits a perfect matching. As before, we conclude that η(G1) = η(G2) =
1. Since every edge of Gm,n is contained in exactly one set among E1, E2, it follows
from Lemma 2 that η(Ym,n) ≥ 1

2
.

Let us now consider upper bounds on η.

Lemma 16. η(Ym,n) ≤ 1
2

for even m ≥ 4 and n ≥ 3.

Proof. The proof is similar to the proof of Lemma 12. For i = 1, . . . ,m, let s(i)
denote the edge (i, 1)(i, 2) if i is even and (i, 2)(i, 3) if i is odd. We say that s(i) is
even (resp. odd) if i is even (resp. odd). Consider the matching M = {s(i) : i =
1, . . . ,m} (see Figure 7 for an example) and set w(e) = 1 if e ∈ M and w(e) = 0 if
e 6∈M . Clearly, M is a maximum weight matching and its total weight is m.

Figure 7: Matching M in Y6,4 for Lemma 16.

Now, let P be a perfect matching in Ym,n. Let i ∈ {1, . . . ,m} be even such that
s(i) ∈ P . Let us renumber the first coordinates 1, 2, . . . , i−1 by m+1,m+2, . . . ,m+
i − 1. If s(i + 2) ∈ P , set i′ = i + 1. Otherwise, let i′ ∈ {i + 1, . . . ,m + i − 1} be
odd and maximum such that s(i∗) 6∈ P , ∀ even i < i∗ < i′. Using exactly the same
arguments as in the proof of Lemma 12, we show that there exists odd i+1 ≤ j ≤ i′

such that s(j) 6∈ P . Hence, for each edge s(i) ∈ P , i even, there exists an edge
s(ji) 6∈ P , ji odd and ji > i and furthermore for s(i1), s(i2) ∈ P , i1 6= i2 even, we
have ji1 6= ji2 .

12



We conclude that if P contains k even edges from M , then there exists k odd
edges of M not belonging to P . Thus, P contains at most k + m

2
− k = m

2
edges

of M and has total weight at most m
2

. Hence, w(P )
w(M)

≤ m/2
m

= 1
2

and thus the result
follows.

Lemma 17. η(Ym,2) ≤ 1
2

for even m ≥ 6.

Proof. Let E1 be the set of four edges described below and illustrated in Figure 8.

Figure 8: Edge set E1 in Y6,2 for Lemma 17.

E1 = {(1, 1)(2, 1), (2, 2)(3, 2), (4, 1)(5, 1), (5, 2)(6, 2)}

Clearly, at most two out of the four edges in E1 can belong to a perfect matching.
Now the result follows by setting w(e) = 1 for all e ∈ E1 and w(e) = 0 otherwise.

Proof of Theorem 13: Consider a cylindrical grid Ym,n with m ≥ 2 even and
n ≥ 1. Since Y4,1 is isomorphic to C4, we immediately conclude that η(Y4,1) = 1.
Next, consider Y4,2. In [7], it was shown that η(Y4,2) ≤ 2

3
. It follows from Lemma

14 that η(Y4,2) = 2
3
.

Since Y2,n is isomorphic to G2,n, it immediately follows from Theorem 7 that
η(Y2,n) = 1 for n ≤ 2 and η(Y2,n) = 1

2
for n ≥ 3.

Finally, we deduce from Lemmas 15, 16 and 17 that for all remaining cases we
have η(Ym,n) = 1

2
.

3.3 Bipartite toroidal grids

In this section, we obtain the following exact values of η for all bipartite toroidal
grids.

Theorem 18. Let Tm,n be a toroidal grid with m,n ≥ 2 both even. Then

η(Tm,n) =



1 if m = n = 2,
2
3

if m = n = 4,
2
3

if m = 4 and n = 2,
1
2

if m ≥ 6 and n ≥ 2,

η(Tn,m) otherwise.

The following lemma gives a lower bound for all bipartite toroidal grids.

Lemma 19. η(Tm,n) ≥ 1
2

for even m ≥ n ≥ 2.
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E1 E2

Figure 9: Spanning subgraphs of T8,6 for Lemma 19.

Proof. Consider two spanning subgraphs G1 = (V,E1), G2 = (V,E2) of Tm,n with
edge sets as described below and illustrated in Figure 9. The first coordinate of the
vertices is taken modulo m and the second modulo n.

E1 = {(i, j)(i+ 1, j) : i is odd from 1 to m− 1, j = 1, . . . , n}
∪ {(i, j)(i, j + 1) : i = 1, . . . ,m, j is even from 2 to n− 2}

E2 = {(i, j)(i+ 1, j) : i is even from 2 to m, j = 1, . . . , n}
∪ {(i, j)(i, j + 1) : i = 1, . . . ,m, j is odd from 1 to n− 1}

Each of the two spanning subgraphs is a disjoint union of C4’s and therefore
admits a perfect matching. As previously, η(G1) = η(G2) = 1. Since every edge of
Tm,n is contained in exactly one set among E1, E2, it follows from Lemma 2 that
η(Tm,n) ≥ 1

2
.

We obtain the same upper bound for sufficiently large toroidal grids.

Lemma 20. η(Tm,n) ≤ 1
2

for even m ≥ 6 and even n ≥ 2.

Proof. For i = 1, . . . , n, let s(i) denote the edge (1, i)(2, i) if i is odd and (2, i)(3, i)
if i is even. Similarly, for i = 1, . . . , n, let s′(i) denote the edge (4, i)(5, i) if i is odd
and (5, i)(6, i) if i is even.

Consider the matching M = {s(i) : i = 1, . . . , n} ∪ {s′(i) : i = 1, . . . , n} (see
Figure 10 for an example) and set w(e) = 1 if e ∈ M and w(e) = 0 if e 6∈ M .
Clearly, M is a maximum weight matching and its total weight is 2n.

Consider the set V ′ = {(3, i), odd i ∈ {1, ...n}} ∪ {(4, i), even i ∈ {1, ..., n}}.
Notice that V ′ contains exactly n vertices and that these vertices are not saturated
by M . Let P be a perfect matching in Tm,n. We will show that P contains at most
n edges of M . Let v be a vertex in V ′ and let u1, u2, u3, u4 be its neighbors (not
necessarily distinct). Notice that each vertex ui, i = 1, 2, 3, 4, is saturated by M .
Since P is perfect, it must contain exactly one of the edges vui, i = 1, 2, 3, 4. Hence,
at least one edge of M saturating the vertices u1, u2, u3, u4 cannot belong to P . Also,
only one endpoint of each edge in M is adjacent to some vertex in V ′. Since every
vertex in V ′ must be matched in P , it follows that there are at least n edges of M
not belonging to P .

Thus, P contains at most n edges of M and has total weight at most n. Hence,
w(P )
w(M)

≤ n
2n

= 1
2

and thus the result follows.
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Figure 10: Sets of edges of T8,6 for Lemma 20, with vertices in V ′ represented as
squares.

Lemma 21. η(T4,4) ≤ 2
3
.

Proof. Let E1 be the set of four edges described below and illustrated in Figure 11.

Figure 11: Edge set E1 for Lemma 21.

E1 = {(2, 1)(2, 2), (4, 1)(4, 2), (1, 2)(1, 3), (3, 2)(3, 3), (1, 4)(2, 4), (3, 4)(4, 4)}.

Clearly, at most four out of the six edges in E1 belong to a perfect matching.
Now the result follows by setting w(e) = 1 for all e ∈ E1 and w(e) = 0 otherwise.

In order to prove the lower bound of η(T4,4), we use the new technique introduced
in Section 2.

Lemma 22. η(T4,4) ≥ 2
3
.

Proof. First notice that the graph T4,4 has diameter 4, i.e. the shortest path between
any two vertices has length at most 4. Consider a maximal matching M in T4,4 that
is not a perfect matching. Clearly, the number of unsaturated vertices in both
sets of the bipartition must be the same. Therefore, the unsaturated vertices must
be in pairs (ui, vi) such that the distance between ui and vi is 3. By testing all
possibilities, we conclude that, up to isomorphisms, there are only three possible
sets of unsaturated vertices, as illustrated in Figure 12.

The figure also shows arbitrary maximal matchings with respect to each set of
unsaturated vertices and 3 edge-disjoint augmenting path forests for each case. Now
we conclude by applying Lemmas 5 and 6 as described at the end of Section 2 that
η(T4,4) ≥ 2

3
.

Proof of Theorem 18: Consider a bipartite toroidal grid Tm,n with even m ≥
n ≥ 2. If m = n = 2, T2,2 is isomorphic to C4 and hence η(T2,2) = 1. Next, if m = 4
and n = 2, T4,2 is isomorphic to Y4,2 and hence η(T4,2) = 2

3
.
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Figure 12: Toroidal grid T4,4 with the three possible sets of unsaturated vertices,
corresponding maximal matchings, and augmenting path forests, for Lemma 22.

If m = n = 4, η(T4,4) = 2
3
. So, we may assume now that m ≥ 6 and n ≥ 2. Then

it follows from Lemmas 19 and 20 that η(Tm,n) = 1
2
.

For all remaining cases, we simply use the fact that Tm,n is isomorphic to Tn,m.

4 Conclusion

In this paper, we considered the parameter η which represents the minimum ratio,
over all possible nonnegative edge weightings, between the maximum weight of a
perfect matching and the maximum weight of a general matching. We determined
the exact value of η for the following graph classes: rectangular grids, bipartite
cylindrical grids, and bipartite toroidal grids. Several open problems remain:

1. What is the complexity of deciding whether for a given graph G = (V,E) and
a nonnegative real c we have η(G) = c?

2. Determine the exact value of η for nonbipartite cyclindrical grids and non
bipartite toroidal grids.

Here, we focused on grid graphs, but the study of the parameter η can be done
for any graph admitting a perfect matching. Hence, it would be of interest to have
more results on the exact value of η in additional graph classes. In particular, since
we provide a new technique for bipartite graphs (see page 6), it would be interesting
to analyse additional subclasses of bipartite graphs.
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