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Abstract

Given a set of n points with positive real weights in d-dimensional space, we con-
sider an approximation to the problem of placing a unit ball, in order to maximize
the sum of the weights of the points enclosed by the ball. Given an approximation
parameter ¢ < 1, we present an O(n/c?~!) expected time algorithm that deter-
mines a ball of radius 1 + € enclosing a weight at least as large as the weight of the
optimal unit ball. This is the first approximate algorithm for the weighted version
of the problem in d-dimensional space. We also present a matching lower bound for
a certain class of algorithms for the problem.

Keywords: Computational geometry; Geometric approximation.

1 Introduction

Let P be a set of n points in R?, for constant d, and w : P — R* be a weight function.
We define the sum of the weights of the points inside a d-dimensional ball B as the weight
w(B) = Zpe prp W(p). In this paper, we consider an approximation to the problem of
placing a ball B of radius 1 maximizing w(B). We call the exact version of the problem
optimal placement, and the unit ball B* of maximal weight the optimal ball. The less
general unweighted version of the optimal placement problem is the special case when
w(p) =1 for all p € P. Let k = w(B*) in the unweighted version.

In the approximate optimal placement problem, we are also given a parameter € < 1,
and need to find a ball B of radius 1 + € such that w(B) > w(B*). We call such ball
an approximate optimal ball and present an algorithm to determine an approximate
optimal ball in O(n/ &:dfl) expected time. We present a matching lower bound, proving
that our algorithm is optimal for n > 1/e, under certain assumptions.

The optimal placement problem has applications in many areas including computer
vision, machine learning, clustering, and pattern recognition [, [4]. Surprisingly, we
could not find explicit solutions for d > 3 in the literature, neither for the exact nor for
approximate versions.

Previous results The exact version of the problem is well studied for d = 2. Chazelle
and Lee [8] presented an O(n?) algorithm for the exact planar case. Aronov and Har-
Peled [?] showed that even the unweighted version of the optimal placement problem
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is 3SUM-hard, that is, the problem belongs to a class of problems for which no sub-
quadratic algorithms are known [I3]. For arbitrary dimension d, the problem can be
solved exactly by projecting the points onto a (d + 1)-dimensional paraboloid and using
halfspace range searching data structures [I5] to compute the weight of the O(n?) unit
balls defined by subsets of d points, solving the problem in roughly O(nd‘H/ 4) time.

The consideration that a practical solution for large data sets needs to be roughly
linear in terms of n motivated the study of approximations to the problem. There are
two natural ways to define an approximation to the problem: we can approximate the
weight w(B*) or the radius of the ball. In the unweighted version, approximating the
weight w(B*) consists of approximating the number k of points enclosed by the optimal
ball. An algorithm to find a unit disk, in the planar case, containing at least (1 — ¢)k
points in O(n!t*+n/¢e) time, where « is an arbitrarily small constant, is presented in [1].
Monte-Carlo approximate algorithms for the same problem are presented in [, 2].

We consider an alternative approximation criterion introduced in [I2]: finding a ball
B of radius 1 + ¢ such that w(B) > w(B*). Funke, Malamatos, and Ray [I?] solve the
unweighted planar version of the approximate optimal placement problem in expected
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The complexity above is obtained through three different algorithms, with expected
running times
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All three algorithms are based on a preprocessing stage which reduces an instance of
the (approximate) optimal placement problem with n points to O(n/k) instances of the
problem such that each instance has O(k) points inside a hypercube of constant diam-
eter. This preprocessing stage only works for the unweighted version of the problem.

Algorithm (i) uses the exact algorithm for d = 2 [8] after the preprocessing stage.
Algorithm (ii) uses grids to calculate the number of points inside each of O(n/(ke?))
balls. In the plane, algorithm (ii) can be combined with algorithm (i) to attain an
expected running time of O(n/e), since algorithm (i) takes O(n/e) time for k < 1/e
and algorithm (ii) takes O(n/e) time for k£ > 1/e. In higher dimensions, an extension
of algorithm (i) takes O(n/e?~! 4 n/(ke?)) time. Using a recent approximate range
searching data structure by Fonseca and Mount [I1], the running time of algorithm (iii)
is reduced to O(n 4 n/(ke*?)) in the plane and O(n + n/(ke®¢=1/2)) in d-dimensional
space.

All existing algorithms for the exact and approximate versions of the optimal place-
ment problem work by calculating w(B) for each ball B in a sufficiently large set B
of balls, and then choosing the ball of maximum weight. We can analyze previous
planar algorithms in terms of |B| and the amortized time T to calculate w(B) for
B € B. The exact algorithm [8] has |B| = O(n?) and T = O(1). Algorithm (i) uses
the preprocessing stage to reduce |B| to O(nk), keeping T = O(1). Algorithm (ii) has
|B| = O(n/(ke?)) and T = O(1 + ke). Algorithm (iii), using recent data structures [I1],
has |B| = O(n/(ke?)) and T = O(1/+/¢).



A problem related to optimal placement consists of, given an integer k, determin-
ing the smallest ball enclosing k points. Har-Peled and Mazumdar [[4] presented an
algorithm to solve the exact planar version of the problem in O(nk) time and an e-
approximate algorithm which extends to d-dimensional space with a running time of
O(n + nlog%/(keQd_l)). Using recent data structures [[1], the running time can be
improved to O(n + nlog% /(keB4=1/2)) Chan [6] presented an exact algorithm for
large values of k, using linear programming with violations. Another related problem
considered by de Berg, Cabello, and Har-Peled [0] consists of determining not one, but
a set of multiple balls enclosing the maximum possible weight.

Contributions The first contribution of this paper is a lower bound for the exact and
approximate versions of the optimal placement problem. We present a lower bound of
Q(n?) for the number of balls |B| that actually need to be inspected in the exact version.
In the approximate version, we present an Q(nmin(n,1/¢)?!) lower bound. Our lower
bounds assume that the algorithm decides which operations to perform on point weights
irrespective of the weights of the points. Algorithms for the unweighted version of the
problem do not meet the assumption, since they use the fact that w(p) = 1 for allp € P
when deciding which weights to add. It is an open question if there is an algorithm that
beats our lower bounds by not meeting our assumption, even in the unweighted version.

The second contribution of this paper consists of an optimal approximate algorithm
to solve the weighted version of the problem in arbitrary dimensions. Our algorithm
takes O(n/e) expected time in the plane and, more generally, O(n/e?~1) expected time
in d-dimensional space, matching our lower bound for n > 1/. Our algorithm does not
make use of exact algorithms for the problem to attain this complexity. Our algorithm
is randomized because it makes use of constant time hashing, but randomization is not
used anywhere else in the algorithm.

We can use our algorithm to improve the running time of the approximate algo-
rithm [14] for certain values of k, finding an e-approximate k-enclosing ball in O(nlog % /e?~1)
expected time. The importance of minimizing the £ dependencies has been recognized
in many recent works [3, B, [2]. Unlike other algorithms for the problem, our algorithm
makes use of subtraction of point weights. It is an open problem whether the same time
complexity can be attained without subtraction.

Throughout this paper, we consider Euclidean balls, but our results hold for other
convex shapes of constant complexity. We also consider d > 2 to be an asymptotic
constant and the same model of computation used in [I2, 4], which is the real RAM
with integer division and random bits (for hashing).

In Section B, we prove the lower bounds for the exact and approximate versions. In
Section B, we present our approximate algorithm. Concluding remarks are discussed in
Section @.

2 Lower Bounds

In this section, we show that any weight-oblivious algorithm (defined next) for the opti-
mal placement problem takes (n?) time in the exact version and Q(nmin(n, 1/¢)41)
time in the approximate version. The lower bound is tight in the approximate version



when n > 1/ and is tight in the exact version for d = 2. For comparison purposes,
we note that the lower bound construction has the number of points enclosed by the
(approximate) optimal ball fixed at k = ©(n) for the exact version and k = O(1/¢) for
the approximate version with n > 1/e.

We say that an algorithm to compute the weight of the (approximate) optimal ball
is weight-oblivious if the algorithm decides which arithmetic operations to perform on
point weights based solely on the coordinates of the points, irrespective of their weights.
Given a set of points P, a weight-oblivious algorithm must calculate the weight of w(B)
for each ball B that is optimal for some weight function of the point set. Otherwise,
there is a weight function for which the algorithm fails to calculate the weight of the
optimal ball.

Previous algorithms [8] that work for the weighted version of the problem are weight-
oblivious, and therefore agree with our lower bound. Algorithms for the unweighted
version of the problem are not weight-oblivious, since they use the fact that w(p) = 1 for
all p € P when deciding which weights to operate on. Nevertheless, existing algorithms
for the unweighted version of the problem do not beat our lower bound in the worst
case.

The assumption of not considering the weights when deciding which point weights to
operate on is also used in the semigroup arithmetic model [@, @] to prove lower bounds
for range searching. We note that, in some rare situations such as halfspace emptiness
queries, existing data structures beat the semigroup arithmetic model lower bounds by
using the fact the all points have the same weight.

Exact version We say that a unit ball B is mazimal if there is no unit ball B’ with
PN B C PN B and we say that two unit balls B, B" are distinct if PN B # PN B'.
Our lower bound proof is based on the following lemma.

Lemma 2.1. If B is a set of pairwise distinct maximal unit balls, then an weight-
oblivious algorithm for the optimal placement problem takes Q(|B|) time.

Proof. The running time of the algorithm is at least as large as the number of balls B
for which w(B) is calculated. Suppose an algorithm did not calculate w(B) for some
maximal unit ball B € B. Since the algorithm is weight-oblivious, the decision of not
calculating w(B) is irrespective of the weights. We set w(p) = 1 for p ¢ PN B and
w(p) =1+ |P\ B| for p € PN B. The ball B is the only optimal ball for these weight
assignments. Since the algorithm did not calculate w(B), it cannot return its weight as
required. O

We now prove our lower bound for the exact version by using a random set of points.

Theorem 2.2. Any weight-oblivious algorithm for the exact optimal placement problem
takes Q(n?) time.

Proof. We show that there exists a set B of pairwise distinct maximal unit balls with
|B| = Q(n?). The theorem follows from Lemma 27I. Instead of considering a particular
pathological set of points P, we consider P to be a random set of n uniformly distributed
points inside the hypercube [~2,2]%. We show that E[|B|] = Q(n?). Therefore, there is
some set P for which |B| is at least as large as the Q(n?) expectation.
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Figure 1: Set of 2d crust caps inside the J-crust of a unit ball.

Let § = ©(1/n) be a constant. Let B’ denote the set of unit balls centered at
coordinates that are multiples of § between —1 and 1. We have |B'| = ©(1/6%) = ©(n?),
but the balls in B’ are neither necessarily distinct nor maximal. Given a unit ball B, we
can obtain a maximal ball M(B) with BN P C M(B) N P by translating B. Next, we
show that the centers of B and M (B) cannot be too far apart for a constant fraction
of the balls B € B'.

Let C' denote the §-crust of B, that is, the locus of the points inside B and within
distance at most § from the boundary of B. We call crust caps the 2d disjoint regions of
C' that are the locus of the points within an angle (centered at the center of the ball) of
at most y from a positive or negative coordinate axis (Figure M), where « is a constant
to be defined next. Each crust cap has a volume of ©(d). Therefore, with constant
probability there is at least one point inside each of the 2d crust caps.

We show that if there is at least one point inside each crust cap, then the distance
between the centers of M (B) and B is O(d). Let v be the translation vector from M (B)
to B. If we set v = arcsin(1/v/d)/2, then there is a point in a crust cap defining an
angle 0 < /2 (centered at the center of B) with v. It follows from basic trigonometry
that ||v|| < d/cosf = O(9).

Let B denote a set of M(B) for B € B’ with balls that are not pairwise distinct
removed. By definition, B contains only maximal pairwise distinct unit balls. Since the
distance between M (B) and B is O(§) with constant probability, E[|B|] = ©(1/§%) =
O(nd). O

Approximate version Recall that, in the approximate version, the algorithm needs
to find a ball B” of radius 1+ ¢ such that w(B’) > w(B*), where B* is the optimal unit
ball. To prove a lower bound for the approximate version, we first modify Lemma 2.
We say that a set of balls C covers a set of unit balls B if for each unit ball B € B there
is a ball C € C such that BN P C CnNP.

Lemma 2.3. If B is a set of pairwise distinct maximal unit balls and C is a minimum
cardinality set of balls of size 1 4 € that covers B, then an weight-oblivious approximate
algorithm for the optimal placement problem takes Q(|C|) time.

Proof. An approximate weight-oblivious algorithm must calculate w(C') for a ball C' of
radius 1 4 ¢ that contains the exact optimal ball B*. Assume that the algorithm did
not calculate w(C'). We can set w(p) = 1 for p ¢ PN B* and w(P) =1+ |P \ B*| for
p € PN B* in order to make B* a subset of any approximate optimal ball C. ]



We now prove our lower bound for the approximate version.

Theorem 2.4. Any weight-oblivious algorithm for the approximate optimal placement
problem takes Q(nmin(n,1/¢)%1) time.

Proof. Consider the construction of B for the exact version, but set § = O(s + 1/n).
It follows that B has ©(min(n, 1/£)9) balls such that any pair of balls dist Q(e) from
each other, even if we allow the balls to be translated without changing the set of points
enclosed by each ball. Therefore, any cover C has cardinality |C| = Q(min(n, 1/¢)%).
To improve the previous lower bound to Q(nmin(n,1/¢)?1), we use the previous
lower bound construction for a set of 1/ points, getting a lower bound of (1/¢%). We
place ne sets of 1/¢ points, each set sufficiently far from each other, obtaining a lower
bound of Q(n/e%"1) for n > 1/e. Combining the Q(n/e%~1) bound, for n > 1/e, with
the Q(min(n, 1/¢)?) bound, we get a lower bound of Q(n min(n, 1/¢)4"1). O

3 An Approximate Algorithm

Let z1,...,24 denote the orthogonal axes. We call the x, axis vertical, the hyperplane
determined by the remaining axes horizontal, and use standard terms such as upper
with respect to these directions. Since we can translate a ball downwards until a point
p € P is on the upper boundary of the ball, we can restrict our search to balls that
contain a point p € P on the upper boundary. Since the approximate optimal ball has
radius 14 € while the optimal ball has radius 1, we can restrict our search to balls such
that the center of the ball has all horizontal coordinates x1,...,x4_1 as multiples of €.
There are |B| = O(n/e?"1) balls satisfying these two conditions. The main difficulty
consists of approximating the sum of the weights of the points inside each of these balls
in T'= O(1) time per ball.

Preprocessing Even though the optimal ball has radius 1, the point set P can have
arbitrarily large diameter. The first stage of our algorithm reduces the problem of
finding an approximate optimal ball in a set P of n points to the problem of finding
an approximate optimal ball among multiple non-empty point sets P, ..., P, with the
following two properties: (i) The diameter of P; is O(1) for 1 < ¢ < m. (ii) The sum of
the cardinalities |Pi| + ...+ |Pyn| = O(n). We define the cardinality of P; as n;.

We construct a grid of cells with side length 2 and determine the list and the count
of points within each non-empty cell. This takes O(n) expected time and space using
hashing [9], and the list and count for a given cell can later be determined in O(1) time.
Alternatively, the same O(n) time complexity can be achieved deterministically with
unbounded space, or an O(nlogn) deterministic time bound can be obtained with O(n)
space using balanced binary search trees [9].

Let the neighborhood of a cell i denote the set of 3¢ cells surrounding cell 4, including
cell ¢ itself. Let P; denote the set of points in the neighborhood of a non-empty cell 7.
Since the optimal ball must be contained in the neighborhood of some non-empty cell,
it suffices to find the approximate optimal ball among m different neighborhoods. Note
that the neighborhood of a cell is contained in a hypercube of diameter 6v/d = O(1).
Since each point is contained in the neighborhood of at most 3% cells, ny + ... + ny, =

O(n).
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Figure 2: (a) Counting the number of points within a ball using subtraction. (b)
Transformation used to reduce the below-ball relation to vertical order.

Cylinders Now, we solve the problem for the set P;. Since P; has O(1) diameter,
there are O(1/e%1) horizontal coordinates that are multiples of . Each horizontal
coordinate uniquely defines the center axis of an infinite vertical cylinder of radius
1+ e. Each cylinder contains O(n;) balls of radius 1 + ¢ with a point on the upper
boundary of the ball. We count the points inside a ball as the difference between the
number of points below the upper boundary of the ball and the number of points below
the lower boundary (Figure B(a]).

To count the points below the upper boundary of each ball, we first apply a non-linear
transformation to the space. For each point within distance r from the central axis of the
cylinder we subtract v/1 — r2 from the x4 coordinate of the point. This transformation
converts the upper boundaries of the balls into horizontal regions (Figure E(b})). We
separately perform the reverse transformation to convert the lower boundaries of the
balls into horizontal regions.

After the transformation, we ignore all coordinate values except for x4. Since we
are interested in an e-approximate solution, we translate the point by at most /2 by
rounding the x4 coordinate of the points to the nearest multiples of €. We also scale
the x4 coordinate by a factor of 1/e, in order to obtain an integer x4 coordinate within
a range of O(1/¢e) possible values. We build two lists containing these O(n;) integer
coordinate values, one for the upper boundaries and one for the lower boundaries.

We sort these two lists using an algorithm that we explain later. For now, assume
we have the lists sorted in non-decreasing order. We can sweep the lists to find the
sum of the weights of the elements that are greater than and respectively less than each
element in O(n;) time. With this information, we determine the weight of each ball in
O(1) time per ball, and then pick the ball of maximum weight.

Sorting Since the lists contain O(n;) integers within a range of O(1/¢) values, it would
be easy to sort them in O(n; logn;) time or alternatively O(n;+1/¢) time using counting
sort [U]. These two approaches would result in total running times of O(nlogn/e?1)
and O(n/e?), respectively. To attain the claimed O(n/e?!) running time, we need an
additional idea.

We have O(1/971) transformed cylinders, each with two corresponding lists. There-
fore, we have O(1/e471) lists with O(n;) elements in each and the elements correspond



to O(1/e) integer values. We add a link from the elements to the corresponding list,
concatenate all lists, sort all lists in O(n;/e%"!) time using counting sort, and finally
separate the now sorted lists back.

For each set P; we consider O(1/e9~1) cylinders. For each cylinder, we consider
O(n;) balls, computing the weights of the balls in O(1) time per ball after sorting.
We sort the O(n;/e?~1) values corresponding to P; in O(n;/e?~!) time. Therefore, our
algorithm takes O(n;/e?~1) for each set P;. Since ny + ...+ n, = O(n), we have the
following theorem.

Theorem 3.1. There exists a weight-oblivious algorithm for the approximate optimal
placement problem with expected running time O(n/adil).

4 Conclusion

We presented an O(n/e? 1) expected time algorithm for the approximate optimal place-
ment problem. Our model of approximation is the same one used in [I2] and differs
from the one used in [, 2, I0] because we are e-approximating the radius of the ball
instead of the count or weight. Since we are approximating the radius, and not the
weights, our algorithm works in the general case where the points have positive weights
from an arbitrary ordered Abelian group.

In the more general ordered semigroup version of the problem, the weights of the
points are positive elements from an ordered commutative semigroup. Since semigroup
elements do not necessarily have an inverse, weights cannot be subtracted. The use of
subtraction seems to be crucial for our algorithm. It would be interesting to obtain an
O(n/e?~1) time algorithm for the ordered semigroup version of the problem, or perhaps
prove a lower bound.

A related problem consists of determining the ball B* of minimum weight with the
center of B* constrained to a given constant complexity region R of the space. An
algorithm to approximate the weight of B* is presented in [I0]. It is easy to adapt our
algorithm to approximate the ball of minimum weight, that is, determine a ball B of
radius 1 — € with center within distance at most ¢ from R and weight w(B) < w(B*),
in O(n/e?1) time.

We presented lower bounds of Q(n?) and Q(nmin(n,1/¢)4"1) for the exact and
approximate problems. Our lower bounds are restricted to weight-oblivious algorithms.
It is an open question if there is a non-weight-oblivious algorithm that beats our lower
bounds, even in the unweighted version.

Our lower bounds do not consider the time spent computing the weight of each
ball. Spherical range searching is known to be a hard problem in the exact version [d].
In the approximate version, the problem is considerably easier [3, @]. Our algorithm
approximates the weight of each ball in O(1) amortized time. It would be elucidating
to understand which sets of balls B allow w(B) for all B € B to be computed in O(1)
amortized time.
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