Shadoks

Shadoks Approach to Convex Covering

Guilherme D. da Fonseca - LIS, Aix-Marseille Université

CG:SHOP Competition

Shadoks

Introduction Competition Problems 2023 Approach

Phase 1 Bron-Kerbosch Vertices Bloating

■ Part of SoCG (International Symposium on Computational Geometry)
■ 5th year, started in 2018-2019
■ Hard geometric optimization problems

- Different problem each year

■ ~ 200 instances given
■ ~ 3 months to compute solutions

- Send our solutions (not the code)
- Score based on the quality of the solutions
- Top teams invited to publish in SoCG proceedings and ACM Journal of Experimental Algorithmics
■ This talk is about the 2023 competition, but let's look at other years...

CG:SHOP 2019

Shadoks

Introduction

Minimum (or Maximum) Area Polygon:

- Input: A set of points $S \subset \mathbb{R}^{2}$
- Output: A simple polygon with vertex set S
- Goal: Minimize (or maximize) the area
- Related to Euclidean TSP
- Two categories: minimization, maximization
- We got 2nd place
- Techniques: greedy and local search

CG:SHOP 2020

Shadoks

Minimum Convex Partition:

- Input: A set of points $S \subset \mathbb{R}^{2}$
- Output: A simple partition of the convex hull of S into convex regions with vertex set S
- Goal: Minimize the number of regions
- We got 4th place
- Used integer programming

11 convex regions

Shadoks

Coordinated Motion Planning:

Start:

Target:

CG:SHOP 2022

Shadoks

Introduction

Partition Into Plane Graphs:

■ Input: A graph G embedded in the plane with straight edges

- Output: A partition of G into plane graphs
- Goal: Minimize the number of partitions (colors)

■ We won 1st place

- Best solution of all teams to all instances

■ Optimal solution to at least 23
■ Reused conflict optimizer

CG:SHOP 2024

Shadoks

Knapsack Translational Packing:

- Input: A convex polygon (container) and a multi-set of polygons with values (items)
- Output: A translation of some items that form a packing inside the container
- Goal: Maximize the sum of the values in the output
- We won 1st place
- Used greedy, local search, and integer programming

CG:SHOP 2023

Shadoks

Introduction

Competition

Convex Covering:

- Input: A polygon with holes P

■ Output: A collection of convex polygons whose union is P

■ Goal: Minimize the number of convex polygons

- We won 2nd place
- Best solution among all teams to 128 of 206 instances

Output

CG:SHOP 2023

Shadoks

Introduction

 Competition
Convex Covering:

- Input: A polygon with holes P
- Output: A collection of convex polygons whose union is P

■ Goal: Minimize the number of convex polygons

- We won 2nd place
- Best solution among all teams to 128 of 206 instances

Output

Two-Phase Approach

Shadoks

1 Find many large convex polygons inside P
2 Cover P with few of them

Phase 1: Build a Collection

Shadoks

■ Build a collection \mathcal{C} of convex polygons:

- Polygons inside P
- Union covers P
- Contains a small subset $\mathcal{S} \subseteq \mathcal{C}$ that covers P
- Convex polygons are large
- There are many of them (but not too many)

124 convex polygons

Phase 1: Build a Collection

Shadoks

■ Build a collection \mathcal{C} of convex polygons:

- Polygons inside P
- Union covers P
- Contains a small subset $\mathcal{S} \subseteq \mathcal{C}$ that covers P
- Convex polygons are large
- There are many of them
(but not too many)

Shadoks

Introduction

Problems

 2023 ApproachPhase 1 Bron-Kerbosch Vertices Bloating

Phase 2

Witnesses

 Set Cover Bootstrapping Questions Implementation- Build a collection \mathcal{C} of convex polygons:
- Polygons inside P
- Union covers P
- Contains a small subset $\mathcal{S} \subseteq \mathcal{C}$ that covers P
- Convex polygons are large
- There are many of them
(but not too many)

124 convex polygons

Shadoks

Introduction Competition Problems 2023 Approach

Phase 1 Bron-Kerbosch Vertices Bloating

Phase 2

Witnesses

 Set Cover Bootstrapping Questions Implementation- Build a collection \mathcal{C} of convex polygons:
- Polygons inside P
- Union covers P
- Contains a small subset $\mathcal{S} \subseteq \mathcal{C}$ that covers P
- Convex polygons are large
- There are many of them (but not too many)

124 convex polygons

Bron-Kerbosch

Shadoks

V-Maximal convex polygon:
Convex polygon $C \subseteq P$ with vertices in V such that for all $p \in V \backslash C$, the convex hull of $C \cup\{p\}$ is not in P

- Classic practical algorithm to enumerate maximal cliques of a graph (V, E)
- In a polygon without holes, the maximal cliques in the visibility graph of V correspond to V-maximal sets
- Not true for polygons with holes

■ Possible to extend Bron-Kerbosch

Bron-Kerbosch

Shadoks

V-Maximal convex polygon:
Convex polygon $C \subseteq P$ with vertices in V such that for all $p \in V \backslash C$, the convex hull of $C \cup\{p\}$ is not in P

- Classic practical algorithm to enumerate maximal cliques of a graph (V, E)
■ In a polygon without holes, the maximal cliques in the visibility graph of V correspond to V-maximal sets
- Not true for polygons with holes

■ Possible to extend Bron-Kerbosch

Bron-Kerbosch

Shadoks

V-Maximal convex polygon:

Convex polygon $C \subseteq P$ with vertices in V such that for all $p \in V \backslash C$, the convex hull of $C \cup\{p\}$ is not in P

- Classic practical algorithm to enumerate maximal cliques of a graph (V, E)
■ In a polygon without holes, the maximal cliques in the visibility graph of V correspond to V-maximal sets
■ Not true for polygons with holes
- Possible to extend Bron-Kerbosch

Vertices

Shadoks

- Other points may be used, not only vertices

■ Number of maximal polygons grows quickly

- Does not scale well

■ Try another approach...

382 convex polygons for $V \cup S_{1}$

Random Bloating

Shadoks

C : convex polygon in P
S : set of points in P
1 Pick a random point $p \in S$
2 Remove p from S
3 If $\operatorname{conv}(C \cup\{p\}) \subseteq P$, then $C \leftarrow C \cup\{p\}$

- C from a constrained Delaunay triangulation or Bron-Kerbosch with $V \subset S$
- Much faster for large instances
- Slightly worse than Bron-Kerbosch for small instances

Random Bloating

Shadoks

C : convex polygon in P
S : set of points in P
1 Pick a random point $p \in S$
2 Remove p from S
3 If $\operatorname{conv}(C \cup\{p\}) \subseteq P$, then $C \leftarrow C \cup\{p\}$

- C from a constrained Delaunay triangulation or Bron-Kerbosch with $V \subset S$
- Much faster for large instances
- Slightly worse than Bron-Kerbosch for small instances

Random Bloating

Shadoks

C : convex polygon in P
S : set of points in P
1 Pick a random point $p \in S$
2 Remove p from S
3 If $\operatorname{conv}(C \cup\{p\}) \subseteq P$, then $C \leftarrow C \cup\{p\}$

- C from a constrained Delaunay triangulation or Bron-Kerbosch with $V \subset S$
- Much faster for large instances
- Slightly worse than Bron-Kerbosch for small instances

Random Bloating

Shadoks

C : convex polygon in P
S : set of points in P
1 Pick a random point $p \in S$
2 Remove p from S
3 If $\operatorname{conv}(C \cup\{p\}) \subseteq P$, then $C \leftarrow C \cup\{p\}$

- C from a constrained Delaunay triangulation or Bron-Kerbosch with $V \subset S$
- Much faster for large instances
- Slightly worse than Bron-Kerbosch for small instances

Random Bloating

Shadoks

C : convex polygon in P
S : set of points in P
1 Pick a random point $p \in S$
2 Remove p from S
3 If $\operatorname{conv}(C \cup\{p\}) \subseteq P$, then $C \leftarrow C \cup\{p\}$

- C from a constrained Delaunay triangulation or Bron-Kerbosch with $V \subset S$
- Much faster for large instances
- Slightly worse than Bron-Kerbosch for small instances

Random Bloating

Shadoks

C : convex polygon in P
S : set of points in P
1 Pick a random point $p \in S$
2 Remove p from S
3 If $\operatorname{conv}(C \cup\{p\}) \subseteq P$, then $C \leftarrow C \cup\{p\}$

- C from a constrained Delaunay triangulation or Bron-Kerbosch with $V \subset S$
- Much faster for large instances
- Slightly worse than Bron-Kerbosch for small instances

82 convex polygons from triangulation

Shadoks

\mathcal{C} : Convex polygons from phase 1
P : Instance polygon with holes

- (\mathcal{C}, P) define a set system
- P has infinitely many points
- First attempt: reduce P to a quadratic number of witnesses, one point per arrangement cell
- Too many witnesses!

■ Building the arrangement is slow!

1009 witnesses for 82 convex polygons

Vertex Witnesses

Shadoks

Introduction

Competition Problems 2023
Approach
Phase 1

Phase 2

Witnesses

Set Cover

Bootstrapping

Questions
Implementation
Thanks

- Solution: only place witnesses near vertices of P
- Does not guarantee that P is covered
- Two possible fixes
- Add a witnesses inside each uncovered area and repeat (generally better, but slower)
- Cover the uncovered area using some quick heuristic (faster and sometimes better)

200 witnesses for 82 convex polygons

Vertex Witnesses

Shadoks

- Solution: only place witnesses near vertices of P
- Does not guarantee that P is covered
- Two possible fixes:
- Add a witnesses inside each uncovered area and repeat (generally better, but slower)
- Cover the uncovered area using some quick heuristic (faster and sometimes better)

5 uncovered regions 8 convex polygons

Vertex Witnesses

Shadoks

- Solution: only place witnesses near vertices of P
- Does not guarantee that P is covered
- Two possible fixes:
- Add a witnesses inside each uncovered area and repeat (generally better, but slower)
- Cover the uncovered area using some quick heuristic (faster and sometimes better)

0 uncovered regions 9 convex polygons

Solving Combinatorial Set Cover

Shadoks

Use mixed integer programming (MIP):

- Very fast for small to medium instances
- Solutions often guaranteed optimal

■ On some large instances: slow and very bad solutions

Use simulated annealing:
■ Solutions close to optimal, but no guarantees
■ Hard to decide how much time to wait before stopping

- Scales well to very large instances

■ No need to use external libraries

Bootstrapping

Shadoks Introduction Competition Problems 2023 Approach

Phase 1 Bron-Kerbosch Vertices
Bloating
Phase 2
Witnesses

Set Cover Bootstrapping

Multiple good solutions can be combined into a collection and solved again

Questions

Shadoks

- The number of iterations when adding more witnesses is often very small
- Theoretical question:

Is there a bound on the number of iterations using vertex witnesses?

- Theoretical question:

Is a subquadratic number of witnesses always sufficient for a collection made of all V-maximal polygons?

- Theoretical question:

Are there efficient enumeration algorithms for the V-maximal convex polygons?

Implementation

Shadoks

- Coded in C++ and compiled with gcc

■ Executed on Fedora Linux using GNU Parallel

- Cplex for mixed integer programming

■ Heavily uses CGAL:

- Polygon union
- Constrained Delaunay triangulation
- Visibility graph
- Arrangement
- Convex hull

Thank You!

