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This Lecture RWTH

e my personal experience (1978-2023)

e my personal interpretation:
— unifying framework: probabilistic models and Bayes decison theory
— formal framework: mathematics (CIRM: rencontres mathématiques!)
— deep learning is just one out of many machine learning approaches
— experience: ‘'more data help’

e My personal messages:
— success of data-driven approaches
— NLP and Al: moving from rule-based to data-driven approaches
— things started 40 years ago, not in 2013!
— evolution from small to large language models
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RWTH

Speech & Language Technology: Sequence-to-Sequence Processing

Automatic Speech Recognition (ASR) Machine Translation (MT)
(speech signal processing) (symbol or text processing)

wir wollen diese grofle Idee Dbewahren

DS

want to preserve this great idea

|we |want|to| preserve | this‘|Agreat| idea

Handwriting Recognition (HWR) common characteristics:
(text image processing) — use of a 'small’ language model (LM)
to generate smooth fluent text

L V| Vel oae (syntax, semantics, context)

— generative aspect of LM: unlike other
NLP tasks (POS/synt./semant. labels, ...)

— LM is learned from text only (without
annotation, unsup. mode, pre-training)

we want | ltdlpreservel ithisll greatll idea

note: this is how (small) language models started (1980 - 2000)
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ASR: first research 1975-1980

ASR is sequence-to-sequence
processing at several levels:
10-ms vectors, phonemes, words

problems:
— ambiguities at/between all levels
— interdependencies of decisions

approach 1975-1980

(Baker/CMU and Jelinek/IBM):

— probabilitistic modelling

— holistic approach (‘’end-to-end’):
single criterion for system design
(Bayes decision rule)

— complex mathematical modelling
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1980-1990 Baseline Statistical Approach to ASR RWIH

e modelling: probability distributions/data-driven approaches with

10-msec vectors: z! = z,..zy.zr 1z € RV
word string: wiv = Wi...Wpeo o WN

e consider joint generative model: p(w!,z]) = p(wl) - p(«T|wl
e language model p(w?): based on word trigram counts, learned from text only [w’

e acoustic (-phonetic) model p(z?|w?): learned from annotated audio [z, w!¥]

— generative hidden Markov model:
discrete models/VQ, Gaussians, Gaussian mixtures, ...
— structure: first-order dependence and mathematically nice
— training: (‘efficient’) EM algorithm with sort of closed-form solutions

e clear difference to general machine learning:
— well-known for isolated events (no context) (z,c) : * — ¢ = c(x)
class posterior p(c|z) better than generative model p(x|c)
— sequence-to-sequence problem: time alighment and language model context

e decoding/generation: Bayes decision rule (simplified form)
= use single criterion and avoid local decisions

H. Ney: NLP - Past, Present, Future ©RWTH 13-Jun-23 5 ETAL, CIRM, Marseille, June 12-16, 2023 _/ﬂp_ ;e/é



Speech Input RWTH

Statistical Approach to ASR

_ — IBM: [Bahl & Jelinek* 83]
Acoustic - .
Analysis — 1985 operational research system:
Tangora (isolated words, speaker dep.)

— note: a separate LM

Xy X
\ 4
4 N
Phoneme Inventor
Global Search: Pr(X ...X1 | Wy ..Wy) Y
127 1Y N
maximize I_

Pronunciation Lexicon

Pr(w,..wy) «Pr(x,..x; [W{...wy)
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over w
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Wy Language Model
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Word Sequence
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Operational ASR Systems RWTH

ASR at Philips: Research Hamburg/Aachen and BU Dictation Systems Vienna:

e 1k-word continuous speech recognition: research prototype
SPICOS 1984-1989 (German BMBF): Siemens, Philips, German universities

e 10k-word continuous speech recognition: commercial Philips product
— speaker dep., DP beam search and dynamic search space, real-time on Motorola 68020
— presentation at Eurospeech 1993: medical text dictation

speech translation at RWTH Aachen: research prototypes

e Verbmobil 1993-2000 (German BMBF):
appointment scheduling/limited domain, German-English, 8k words

e TC-STAR 2004-2007: domain: speeches given in EU parliament
— challenge: MT robust wrt ASR errors — data-driven methods
— approach to MT: phrase-based approach

— first research prototype for unlimited domain and real-life data
o fully automatic, not real time
o without deep learning!
— partners: KIT Karlsruhe, RWTH, CNRS Paris, UPC Barcelona, IBM-US Research, ...

more research prototypes: GALE, BOLT, BABEL, QUAERO, EU-Bridge, Translectures, ERC
along with DARPA/NIST/project evaluations
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ASR History: Operational Research Systems RWTH

e steady improvement of data-driven methods:
HMMs with Gaussians and mixtures, phonetic CART, statistical trigram language model,
speaker adaptation, sequence discriminative training, ANNs

e methodology in ASR since 1990: standard public data:
TIMIT, RM/1k, WSJ/5k, WSJ/20k, NAB/64k, Switchboard/tel., Librispeech, TED-Lium

e 1993-2000 NIST/DARPA: comparative evaluation of operational systems:
— virtually all systems: generative HMMs and refinements
— 1994 Robinson: hybrid HMM with RNN (singularity!)

alternative concepts (with less success):

e 1985-93: criticism about data-driven approach/machine learning
— acoustic model: too many parameters and saturation effect
— concept of rule-based Al: acoustic-phonetic expert systems
— language model: similar criticism (linguistic grammars)

e SVM (support vector machines): never competitive in ASR
(ASR requires decisions in context!)
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ASR: ANN in Acoustic Modelling RWTH

e 1987 [Bourlard & Wellekens 87]: MLP and ASR
e 1988 [Waibel & Hanazawa™ 88]: phoneme recognition by TDNN (convol.NNs!)

e 1989 [Bourlard & Wellekens 89, Morgan & Bourlard 90]:
— ANN outputs: can be interpreted as class posteriors
— hybrid HMM: use ANN for frame label posteriors

e 1989 [Bridle 89]: softmax ('Gaussian posterior’) for normalized ANN outputs
e 1991 [Bridle & Dodd 91] backpropagation for HMM discriminative training at word level

e 1993 [Haffner 93]: sum over label-sequence posterior probabilities in hybrid HMMs
(sequence discriminative training )

e 1994 [Robinson 94]: RNN in hybrid HMM
(operational system, DARPA evaluations)

e 1997 [Fontaine & Ris™ 97, Hermansky & Ellis™ 00]:
tandem HMM: use ANN for feature extraction in a Gaussian HMM

e 2009 Graves: CTC for handwriting recognition
(operational system, ICDAR competition 2009)
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Neural ASR: Tandem vs. Hybrid HMM RWIH

hybrid HMM: ANN-based feature extraction + Gaussian posterior + HMM
e 2009 [Graves 09]: CTC - good results on LSTM RNN for handwriting task
e 2010 [Dahl & Ranzato™ 10]: improvement in phone recognition on TIMIT

e 2011 [Seide & Li™ 11, Dahl & Yu™ 12]: Microsoft Research
— fully-fledged hybrid HMM
— 30% rel. WER reduction on Switchboard 300h

e since 2012: other teams confirmed reductions of WER by 20% to 30%

tandem HMM: ANN-based feature extraction + generative Gaussian + HMM
¢ 2006 [Stolcke & Grezl™ 06]: cross-domain and cross-language portability
e 2007 [Valente & Vepa™ 07]: 8% rel. WER reduction on LVCSR
e 2011 [Tiske & Plahl* 11]: 22% rel. WER reduction on LVCSR/QUAERO

experimental observation for hybrid and tandem HMM:
progress by using deep MLPs
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Finite-State Transducer: Hidden Markov Model RWTH

(similar: CTC and RNN-Transducer)

— sequence of acoustic vectors:
X = af = zy...xs..xr overtimet =1, ...,T

— sequence of states s =1, ..., S
sT = $1...8¢...s7 over time ¢
with phonetic labels:
af = A1+e:Qg...A 8

= W: word sequence

T 11 1T 1T 1T T T 1T T T T"]I
time

e classical HMM: generative model for input sequence =7
q19(33f|W — af) — ZST Ht qﬁ(8t+1|3t7 a’St) * q’l?(wt|a'3=st)
1

e hybrid HMM: discriminative model for output sequence a?
using q(x:¢|as) = q(as|z:) - q(:)/q(as):

qo(W = afk’f) = ZslT Ht qo(St11]8¢) as,) * qu(@s=s,|Tt)

[Bourlard & Wellekens 89] machine learning point-of-view:
it is much(!) easier to model gy(a;|x:) than gy(x:|as)
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Artificial Neural Networks (ANN) and Deep Learning:

RWTH

[0 0000000 0 0 0 0]
question: what is different now after 30 years?
O O O O O O O O
answer: we have learned how to (better) handle
20000099 a complex numerical optimization problem:
= e more powerful hardware
(e. g. GPUs)
s 229032992 e empirical recipies for optimization:
practical experience and heuristics,
O OO OO O OO . .
e.g. layer-by-layer pretraining
cooooo0o0o0 e result: we are able to handle more
complex architectures
90900000920 (deep MLP, RNN, attention, transformer, etc.)
O O 0O O O O O O
my interpretation: 2022’s most advanced ASR systems:
5 06060606060 — sophisticated feature extraction/representation
+ softmax ( = Gaussian posterior)
O O O O O
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Input-Output Alignment: Attention and Transducer RWIH

common properties:
— input: acoustic encoder: representation/state vectors h; = hi(x7),t = 1,...,T
— output: (phoneme) labels a,, s = 1,...,.S with/without integrated language model

o (cross-) attention: direct factorization:
p(al|x Hp(asla Lal) = Hp(aslas 15 Ts—15 Cs)
cs = th(ﬂa0 Lal) - hy
o with context vector ¢, and output state vector r,
g:i criticism for ASR: lack of strict monotonicity
and localization

e finite-state transducer (post. HMM, CTC, RNN-T, ...):
introduce hidden paths and then factorize:

T

O O 0O 00O
O OO 00O
O OO 00O
O O 0O 00O
O O 0O 00O
O O 0O 00O
O OO 00O

%

representation/state vectors h;: p(a’|xT) = Z . p( T af|hT (xT ))

— deep MLP: finite window B e

— RNN and LSTM-RNN =D g [Ip(se1 9 = as|s ™, T (@)
t

— self-attention (transformer)
similar: output string
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Sequence-to-Sequence Processing:

Transformer Approach (Google [Vaswani & Shazeer* 17])

designed for a 'two-dim.’ problem
with input and output sequences:

e keep the cross-attention between
output and input as in RNN
attention [Bahdanau & Cho™ 15]

e for input and output sequence:
replace RNN structure
by self-attention,
I. e. pair-wise associations

2020 OpenAl: transformer GPT-3:

— 96 layers, each with 12.288 nodes
— 96 attention heads

in total: 175 Bio parameters

use LM concept for MT:

1 rather than 2 sequences
2013 [Kaltenbrenner & Blunsom 13]
2014 [Sutskever & Vinyals™ 14]
today: most successful with GPTs
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Machine Translation (MT): History R

statistical approaches were controversial in MT (and other NLP tasks):

e 1969 Chomsky:
... the notion ’probability of a sentence’ is an entirely useless one,
under any known interpretation of this term.

e result: strict dichotomy until (around) 2000:
— speech = spoken language: signals, subsymbolic, machine learning
— language = written text: symbols, grammars, rule-based Al

o until 2000: mainstream approach was rule-based
— result: huge human effort required in practice
— problems: coverage and consistency of rules

e 1989-93: IBM Research: statistical approach to MT
1994: key people (Mercer, Brown) left for a hedge fund

e 1996-2002 RWTH: improvements beyond IBM’s approach:
HMM alignments, log-linear modelling, phrases as basic units

e around 2004: from singularity to mainstream
F. Och (and more RWTH PhD students) joined Google
2008: service Google Translate

e since 2014: neural MT (unlike count-based MT):
attention mechanism [Bahdanau & Cho™ 15]

H. Ney: NLP - Past, Present, Future ©RWTH 13-Jun-23 15 ETAL, CIRM, Marseille, June 12-16, 2023 _/ﬂp_ ;e/é




Unifying Framework: RWIH

Statistical Decision Theory and Bayes Decision Rule

¢ so far: historical review of ASR (along with MT) and ANNs
covering a variety of ANN models and training criteria

e what about training criteria?
(e. .g. cross-entropy, seqg.disc. training, min. Bayes risk, expected loss, ...)

ultimate justification should be based on performance

— consequence: re-visit Bayes decision rule und its framework
— example: textbook by Duda & Hart 1973, pp. 11-16

— originally not explicitly meant for ASR or string processing

e what is not well covered in textbooks or papers:
— mathematical relation between training criteria and loss function/performance
— practical implications for training criteria

references, mostly RWTH:
[Ney 03, Schliiter & Scharrenbach™ 05, Xu & Povey™ 10, Schliiter & Nussbaum™ 11],
[Schliiter & Nussbaum™ 12, Schliiter & Nussbaum-Thom™ 13, Schliiter & Beck™ 19]
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Bayes Decision Theory and Machine Learning W

(Puristic Mathematical View)

simplified notation: input string z = =T and output string ¢ = ¢
e define performance criterion: loss function L|c, |, e. ¢. edit distance (WER) in ASR

e frue Bayes decision rule:
theoretical assumption for guaranteed optimal performance:
use TRUE (unknown) posterior distribution pr(c|x) of the input data:

general loss: x — c.(x) := arg min { Z~ pr(c|x) - L[c, ] }

\ .

expecféd loss
e pseudo Bayes decision rule:
replace pr(c|x by a MODEL py(c|x) to generalize to unseen input «:

general loss: x — cy(x) := argmin { Z~ py(€|x) - L[e, c]}
0/1loss: x — cy(x) := arg max{ pg(c|a3)}
textbooks: 0/1 loss widely used, i. e. optimal for minimum string error

¢ principal questions:
— optimality: is it preserved when replacing pr(c|x by py(c|x) ?
— exact loss function: how much does it matter ? in training/testing ?
— what are suitable training criteria for learning py(c|x) ?
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Unifying View: RWIH

Bayes Decision Theory and Machine Learning
(Why are we doing what we are doing? )

Performance Measure Probabilistic
(Loss Function) Models

|

—>| Training Criterion —{ Numerical Optimization} Training
Data

Parameter
Estimates

---*

(Exact Form) (Search) Test
Data

Bayes Decision Rule _>[Combinatorial Optimization

1 Output

{ Evaluation
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Bayes Decision Theory and Machine Learning W

mathematical analysis (omitting details):

o optimality of pseudo Bayes decision rule: yes
analysis: distinguish expected loss (error rate) for true and pseudo Bayes rules

¢ type of loss in Bayes decision rule:
— compare 0/1 loss with general loss L[¢, c]
— identical results for metric loss function (e. g. edit distance)
if max.py(clx) > 0.5

e training criteria:
— can be derived from expected loss
— can be formulated as a function of model py(c|x)
— training in practice: HUGE numerical optimization problem
(many shortcuts and approximations beyond CE training)
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Statistical Decision Theory for NLP: RWTH

Where do we stand ?

e exact loss function:
— not so important in testing
— more important in training

this lecture:

— statistical decision theory defines a perfect framework

— its principles go beyond NLP and ANN

¢ probabilistic models:
— are most important:

caused progress 1980-2023 Performance Measure Probabilistic
— dependencies and synchronization (Loss Function) Models
between input/output strings
— often (e. g.- ASR): separate LM |
* tr?m_mg criterion: —»| Training Criterion Numerical Optimization Training
— IS important Data
— depends on prob. models ? Parameter
e numerical optimization: : Estimates
— hard math. problem I : - - o
_ : : ayes Decision Rule ombinatorial Optimization
'aII varlants_ of bacl_(propagatlon —>| " (Exact Form) (Search) ]< Test
— important in practice (1990 vs. 2022!) Data
. - . Output
e decision rule: search/generation: 1 P
today’s models: more important Evaluation
for low-accuracy conditions
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ASR Modelling: String Posterior Probability R

e complete model for [input,output] pair [zT, W = a?]
consists of language model (LM) and acoustic (-phonetic) model (AM):

a5 (W) - gy(W = af|zT)
S a3(W) - gh(W = af|zT)

with model parameters ¥ (and exponents «, 3)

po(Wlz]) :=

e motivation: the log-linear combination mimicks the generative approch:

po(zi, W) _ ps(W) - py(ag|[W)
D W pﬁ(w{a W) D W Pﬁ(W) 'pﬁ(wﬂw)

po(Wlz]) :=

e language model gy(W)
learned from text data only (without annotation) (e. g. 100 Mio words)

e acoustic model (AM): finite-state transducer (CTC, RNN-T, post.HMM, ...):
qo(W = a’fk’f) = ZS{ Ht qo(St+1]st, as,) - qt‘}(as=8t|af)

learned from (manually) transcribed audio data (e. g. 500 hours = 5 Mio words)
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Acoustic Model: Training Criterion and Procedure RWTH

suitable training criterion for (audio, text) pairs [ X,, W,]|, r = 1, ..., R:
q*(W) - ¢5(W|X)
> a*(W) - ¢5(W|X)

max { Z log pﬁ(WT|XT)} po(W|X) =

numerical optimization problem in training:

e ignore denominator: simplified baseline
— effect: decoupling of AM and LM
advantage: independent training of AM and LM
— variants for AM training: full sum or best path/Viterbi (frame-wise CE)
note: EM framework still works for neural HMM

e keep denominator: sequence discriminative training
— 0/1 loss: errors at sequence level (IBM 1986: MMI)
(see above: training criterion)
— exact loss (e. g. WER): errors at symbol level in sequence context
variants in ASR: Povey’s phoneme/symbol error, sMBR, ...
result: LM affects training of AM!

denominator: how to approximate it?
— word hypothesis lattice
— simplifed language model (lattice-free MMI, Povey 2016)

history: Bahl/IBM 1986, Normandin 1991, Valtchev 1996, Povey 2002/16, Heigold 2005/12
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ASR: End-to-End Approaches il

reconsider training criterion for (audio,ctext) pairs [ X, W,], r =1,..., R:

g*(W) - ¢5(W|X)
S (W) - gh (W] X)

max { 3" log po(W|X,) } po(W|X) :=

terminology: What does end-to-end mean?

e training criterion: a single global criterion for optimum performance,
independent of model structure

e monolithic structure of a model:
simplicity/elegance of programming? what about adequacy/performance?

remarks:

e ASR: training of acoustic model and language model:
— transcribed audio: 500 hours = 5 Mio words
— text (from press, books, internet,...): 100 Mio words and more

e end-to-end concept:
— for training and search/generation: yes
(? and robustness/easiness of training)
— for the structure: can it reflect the training data situation?
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Effect of AM, Training Criterion and LM RWTH

(Tuske et al. RWTH 2017)

QUAERO task, English Eval 2013:
broadcast news/conversations, podcasts, TED lectures

Word error rates [%] on QUAERO English Eval 2013
(PP: perplexity of LM = power of LM = effective vocab.size)

Acoustic Model (AM): hybrid HMM Language Model (LM)
Type Training Criterion Count | Count + ANN
yp 9 PP=131.1| PP=92.0

Gaussian mixtures max.lik. 20.7
seq.disc. training 19.2 16.1
FE MLP frame_-W|se (?E_ 11.6
seq.disc. training 10.7 9.0
Neural Net _
LSTM RNN frame-wise CE 10.6
seq.disc. training 9.8 8.2

observations:

— improvements by acoustic ANNs: 50% relative

— improvement by language model ANN: 15% relative

— total improvements by deep learning: 60% relative (from 19.2% to 8.2%)
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Neural Language Modelling RWTH

[Sundermeyer et al.; RWTH 2012, 2015]

e important principle (undervalued!):
— move away from count-based statistics for categorial random variables
— instead: word/symbol embeddings and operations in a high-dim. vector space

e interpolation of TWO models (2015):
count model (3 Bio words) + ANN model (60 Mio words)

¢ details and refinements:
— use of word classes for softmax in output layer
— unlimited history of RNN: requires re-design of ASR search

e perplexity (PP) and word error (WER) rate on test data (QUAERO)

models PP | WER[%]
count model 131.2 12.4
+ 10-gram MLP 112.5 11.5
+ Recurrent NN 108.1 11.1
+ LSTM-RNN 96.7 10.8
+ 10-gram MLP with 2 layers | 110.2 11.3
+ LSTM-RNN with 2 layers 92.0 10.4

e improvements achieved:
— perplexity: 30% reduction: from 131 to 92
— WER: 15% reduction: from 12.4% to 10.4%
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Effect of Language Model: Word Error Rate vs. Perplexity

empirical law: WER = o - PP”

with 3 € [0.3, 0.5]

[Makhoul & Schwartz 94, Klakow & Peters 02]

RWTH

124 1o b o b Loy —
Q 12— s PR | | Count-based <
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Effect of Language Model: Word Error Rate vs. Perplexity

empirical law: WER = o - PP?
open question: theoretical justification?

P
N i S SR AR S SO S CH I
T T S S S S AOAPEIN —
o R N N R N R
W Q2 [T .
S St SIS U 0t S S SRS S -
BT T CHTT R SR UP S R -
L I S S S S R AU S S S S —
1) 16 = O
© 4 =it -
= Oy

RWTH
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[]

100 125 160 200 250 315 400 500 630 800 1000 1250 1600 2000
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Language Modeling and Artificial Neural Networks RWTH

early work:

e 1989 [Nakamura & Shikano 89]:
English word category prediction based on neural networks.

e 1993 [Castano & Vidal™ 93]:
Inference of stochastic regular languages through simple recurrent networks

important component in ANN-based LMs:
— word/symbol representations/embeddings: vectors in high-dim. space
— in addition to ANN structures (MLP, RNN, LSTM-RNN, transformer, ...)

since 2000 (mainly LM for ASR):
e 2000 [Bengio & Ducharme™ 00]: A neural probabilistic language model

e 2002 [Schwenk & Gauvain 02, Schwenk 07]:
Continuous space language models

e 2010 [Mikolov & Karafiat™ 10]:
RNN based language model

e 2012 RWTH Aachen [Sundermeyer & Schliiter 12]:
LSTM-RNN for language modeling
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Word Representations: Language Models and General NLP RWIH

power of LMs and word representations (spirit of distributional semantics):
1954 Harris: Words are similar if they appear in similar contexts.
1957 Firth: You shall know a word by the company it keeps.

e papers by [Collobert & Weston 08, Collobert & Weston™ 11]:
2008: A Unified Architecture for NLP: Deep Neural Networks with Multitask Learning.
2011: NLP (almost) from Scratch.

use of word vectors for formal NLP tasks:
POS/NER tagging, syntactic analysis, semantic role labeling, text classif., ...

e word vectors: (semantic) interpretations and calculations
examples of relations between word vectors [Mikolov & Corrado™ 13]:

Germany — Berlin France — Paris

211

king — queen man — woman

e 2013/2014: use LM concept for MT [Kaltenbrenner & Blunsom 13, Sutskever & Vinyals™ 14]

e since 2019: LLMs (large-scale LMs) based on GPT architecture:
— G: generative: generate text (as opposed to formal NLP tasks)
— P: pre-trained: based on text without any annotation
— T: transformer: ANN structure for sequence-to-sequence processing

LLM implies: more data, more parameters (200 Bio), multi-lingual, multi-task, ...
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Refining LLMs: InstructGPT RWIH
InstructGPT introduced by OpenAl, arxiv, 04-Mar-2022:
Training language models to follow instructions with human feedback.

three levels of training:

e pre-training or unsupervised training (using log perplexity):
— training mode: raw text with no annotation

— operation mode (surprising result !):
type of task (prompft): can be specified in plain language
(e. g. summarization, story generation, translation, ...)
full system operation is described by a triplet (in plain language!):
triplet := [prompt, input, output]
(typically used in so-called few-shot learning/setting)

e supervised fine-tuning:
— training data: based on (many) triplets of the above type
— training criterion: (log) perplexity
all triplets are interpreted as a single sequence of text

e human feedback and reinforcement learning:
— starting point: system is used to generate the outputs for [prompt, input] pairs
— human evaluation and ranking
— reinforcement learning based on human scores
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Summary RWIH

40 years of building operational systems for NLP:
e success of data-driven vs. handcrafted rule-based approaches
e misconception: things started 40 years ago, not in 2013!

¢ persistent evolution of data-driven concepts:
— signal-processing NLP: ASR and HWR
— text-processing NLP:
[0 language models for ASR (+ HWR + MT)
[J machine translation (MT)
[1 large language models for NLU, e. g. Q&A, dialog management, ...

¢ additional success (‘revolution’):
symbol embeddings/vectors in contrast to symbol count statistics

o statistical decision theory:
unifying framework for data-driven approach and machine learning:
— distinguish ingredients:
loss function, prob.model, training criterion along with humerical optimization
— includes as a special case: ANNs and deep learning
— most useful framework after 40 years of NLP
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What about the Future? RWTH

future: what time horizon: 3, 5, 10, 20 years?
e. g. difficult prediction: ANN around 1990

short-term horizon: low-hanging fruits
— more data, more complex models, more parameters, more computation
— 1989 R. Mercer/IBM: There is no data like more data.

long-term horizon: scientific challenges:
beyond more data, we need better mathematical frameworks:

e back-propagation search:
beyond trial and error: better theory of humerical optimization

e present ANN structures
— deep MLP, RNN, LSTM, self-embedding, transducer, transformer,...:
— lack of principal mathematical justification:
why are some structures better for modelling and learning?

e beyond ANN structures:
— what about going beyond the present structures (matrix-vector product + nonlinearity)?
— there is plenty of (data-driven) life outside and beyond deep learning!
(but yes, it will be complex mathematical models)
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What about the Future? (ctd) R

e word/symbol embeddings in NLP:
— most important concept in lieu of count-based statistics
— widely underrated in statistics and general NLP

e open research directions: beyond supervised machine learning:
strictly unsupervised machine learning,
I. e. absolutely no parallel (input,output) pairs

H. Ney: NLP - Past, Present, Future ©RWTH 13-Jun-23 33 ETAL, CIRM, Marseille, June 12-16, 2023 _/pp_ ;g/é



END
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Speech Translation RWIH

SPEECH SIGNAL IN
SOURCE LANGUAGE

{

TEXT IN
SOURCE LANGUAGE

A"

TEXT IN
TARGET LANGUAGE

source audio X — source text F' — target text £

challenge: exploit three types of training data

— text MT: (F, FE) sentence pairs (e. g. 100 Mio = 1-2 Bio words)
— ASR: (X, F) pairs (e. g. 5000 hours = 50 Mio words)

— speech-text MT: (X, F) (e. g. 1000 hours?)

ETAL, CIRM, Marseille, June 12-16, 2023 _/pp_ ;glé

H. Ney: NLP - Past, Present, Future ©RWTH 13-Jun-23 35



Industry vs. Academia RWIH

most important contributions:

e academia:
- general HMM framework
- RNN-HMM [Robinson 1994]
- RNN-CTC [Graves 2009]
- deep learning (in the narrow sense!) [Hinton 2011]
- cross-attention [Montreal team 2014]

e industry:
- self-attention and transformer
- conformer
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APPENDIX: LLM and GPT
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ChatGPT and Related Models RWIH

e large-scale language model (LLM) called chatGPT:
— API introduced on 30-Nov-2022 by OpenAl
— function: human-like conversational (text) dialog (unlimited domain)
— CEO S. Altman: "costs are eye-watering”
— operational loss in 2022: 540 Mio USD (416 on computing, 89 on staff)

e OpenAl’s technology behind chatGPT:
— baseline architecture GPT: generative pre-trained transformer
— GPT-3: with 1.3 to 175 Bio parameters,
trained on 300 Bio (subword) tokens (cut-off date: June 2020)
— InstructGPT (sibling to ChatGPT): refinement with human feedback

e other types of dialog systems:
— limited-domain, task-oriented dialog
— explicit dialog strategy: manually designed and coded

specific systems: voice command and control

— Amazon’s Alexa (loss in 2022: 10 Bio USD - 12 000 employees)
— Apple’s Siri

— Google’s (Digital) Assistant
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LLM and GPT: Typical Tasks

every-day NLP tasks with plain text for input and output:

e conversational dialog (with many turns):
input: customer query/command

output: system response

¢ text summarization:
input:  full text
output: text summary

e story generation:
input:  key words
output: full text

e machine translation (with bilingual training data):
input: sentence in source language
output: sentence in target language

remarkable property (in contrast to formal NLP tasks):

everything is expressed in terms of plain every-day language:

— system input: formulated by the user
— type of task (prompt/instruction): specified by the user
— generated output: smooth fluent language

(primary goal which a language model is designed for)

RWTH
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RWTH
History: How (Small) Language Models Started (1980-2000)

(small) language models:

¢ introduced by IBM for ASR around 1980
— key advantage: use of text data without annotation
— statistics: based on counts of word trigrams (and higher order n-grams)
— concept: sucessfully transferred from ASR to HWR and MT

e experimental conditions around 2000:
— training: about 100 Mio running words (tokens)
— model size: same order of magnitude

e training criterion: log perplexity (= cross-entropy), i. e. predict next word
probability of a word sequence w¥ = wj...w,....wN:

n—1

log py(wl) = Zgzl log py(wp|wy ™)

word sequence| o o 0 0 0 0 0 O 0O 0O O 0O O 0O O O O O O O O

left-to-right| ©¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o []
© e 0060600 0 o0

bidir. (BERT 2018) | e o [] oo 000060 0 0
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Some LLMs (until 2022) RWTH

e OpenAl:
- 2018 GPT-1: 0,12 Bio
— 2019 GPT-2: 1,5 Bio
— 2020 GPT-3: 175 Bio (train: 300 Bio)
— 2022 InstructGPT and ChatGPT

e Google:
— 2018 BERT: 3,3 Bio (train: 300 Bio, 40 epochs)
— 2019 T5: 11 Bio (train: 1000 Bio)
— 2020 Meena (for dialog): 2,6 Bio (train: 61 Bio)
— 2022 LaMDA: 137 Bio (train: 2810 Bio)
— 2022 PalLM: 540 Bio (train: 780 Bio)

e more LLMs:
— 2019 BART / Meta: 0,33 Bio (train: 55 Bio, 40 epochs)
— 2019 Megatron / Nvidia: 3,9 Bio (train: 366 Bio)
— 2020 DialoGPT / Microsoft: 0,76 Bio (train: 10 Bio)
— 2022 OPT / Meta: 175 Bio (train: 180 Bio)

e years 2021-2022: more than 50 LLMs
recent European activities:
— BLOOM / BigScience: 176 Bio (train: 366 Bio)
— Luminous / Aleph Alpha (OpenGPT-X): 70 Bio (train: 588 Bio)
— HPLT / EU project: major EU languages
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i RWTH
Conclusions

¢ large-scale language models:
— primary design goal: to generate smooth fluent text
— approach: data, but no manual design or coding

— dialog management: learned by data-driven approach
(unlike manually designed dialog strategies)

— (hopeful) by-product: semantic correctness

e LLMs are part of data-driven machine learning:
— more data, more complex models, more computation
— 1989 R. Mercer/IBM: There is no data like more data.

¢ re-interpretation of neural LLM: operations in high-dim. vector space:
— used for categorical data along with symbolic reasoning
— useful for areas beyond NLP? general concept for categorical statistics?
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